skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vadas, Sharon L"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We review the mechanism of multi-step vertical coupling (MSVC) via secondary and higher-order gravity waves (GWs), and its relevance for observed GW perturbations and the circulation in the upper mesosphere and thermosphere. Since the momentum deposition following the breaking or dissipation of a GW packet is localized in space and time, it leads to an imbalance in the ambient flow which in turn results in the generation of secondary or higher-order GWs. This local “body force” (LBF) mechanism is essential for MSVC. We argue that small-scale secondary GWs resulting directly from GW instability form a macro-turbulent cascade that leads to the LBF. We present a simple scale analysis supporting this interpretation with respect to observed GW spectra. Several examples of MSVC are reviewed. These include 1) an explanation of the observed persistent GWs and prevailing eastward winds in the winter mesopause region at middle to high latitudes via secondary GWs, 2) evidence that many of the daytime traveling ionospheric disturbances in the F region during winter and low geomagnetic activity are driven by higher-order GWs from MSVC, 3) the dependence of MSVC during wintertime on the strength of the polar vortex, and 4) the secondary GW disturbances in the thermosphere and ionospheric that were triggered by the Tonga volcanic eruption on January 15, 2022. Furthermore, we describe the GW-resolving whole-atmosphere model that was primarily used in corresponding studies of MSVC, and we discuss some open questions. 
    more » « less
  2. We analyze an episode of strong mountain wave (MW) activity over the western US from 9 to 12 January 2017 using the HIgh Altitude mechanistic General Circulation Model. We find that medium‐scale MWs were generated by strong eastward flow over the Sierra Nevada and the Rocky Mountains. During this time, part of the stratospheric polar vortex jet extended from the western US to eastern Canada such that the MWs propagated into the lower mesosphere where they dissipated from westward vertical wind shear. This resulted in secondary gravity waves (GWs) that propagated into the lower thermosphere where tertiary GWs having concentric ring structures were created. With increasing altitude in the thermosphere, certain propagation directions were highlighted as a result of the dissipation induced by the tidal winds. At 260 km, we find eastward propagation during local morning over the northeastern US, equatorward propagation around local noon over the southern US, westward propagation during local afternoon over the northwestern US, and poleward propagation over Canada after local midnight. In addition, the model shows equatorward propagating larger‐scale GWs over Canada from remote sources around local noon. The simulated regional GW‐mean flow interaction patterns are consistent with multi‐step vertical coupling triggered by the MWs. The traveling ionospheric disturbances (TIDs) during the MW event are simulated with the ionospheric model SAMI3. The simulated GWs and TIDs are consistent with the medium‐to‐large‐scale TIDs observed over the continental US in GPS TEC data. 
    more » « less
    Free, publicly-accessible full text available September 1, 2026
  3. Abstract The Gravity Field and Steady‐State Ocean Circulation Explorer (GOCE) and CHAllenging Minisatellite Payload (CHAMP) satellites measure in‐situ thermospheric density and cross‐track wind. When propagating obliquely to the satellite track in a horizontal plane (i.e., not purely along‐track or cross‐track), gravity waves (GWs) can be observed both in the density and cross‐track wind perturbations. We employ the Wavelet Analysis, red noise model, dissipative dispersion and polarization relations for thermospheric GWs, and specific criteria to determine whether a quiet‐time (Kp < 3) thermospheric traveling atmospheric disturbances (TADs) event is a GW or not. The first global morphology of thermospheric GWs instead of TADs is reported. The fast intrinsic horizontal phase speed (cIH> 600 m/s) of most GWs suggests that they are not generated in the lower/middle atmosphere (wherecIH < 300 m/s). A second population of GWs with slower speeds (cIH = 50–250 m/s) in GOCE are likely from the lower/middle atmosphere, but they occur much less frequently in CHAMP. GW hotspots occur during the high‐latitude and the winter midlatitude regions. GW amplitudes exhibit semi‐annual and annual variations. These findings suggest that most GOCE and CHAMP GWs are higher‐order GWs from primary GW sources in the lower/middle atmosphere. Finally, the average propagation direction of the CHAMP GWs exhibits a clear diurnal cycle, with clockwise (counterclockwise) occurring in the northern (southern) hemisphere and equatorward propagation occurring at ∼13 LST. This suggests that the predominant GW propagation direction is opposite to the background wind direction. 
    more » « less
  4. Abstract The moving solar terminator (ST) generates atmospheric disturbances, broadly termed solar terminator waves (STWs). Despite theoretically recurring daily, STWs remain poorly understood, partially due to measurement challenges near the ST. Analyzing Michelson Interferometer for Global High‐resolution Thermospheric Imaging (MIGHTI) data from NASA's Ionospheric Connection Explorer (ICON) observatory, we present observations of STW signatures in thermospheric neutral winds, including the first reported meridional wind signatures. Seasonal analysis reveals STWs are most prominent during solstices, when they intersect the ST about ∼20° latitude from the equator in the winter hemisphere and have phase fronts inclined at a ∼40° angle to the ST. We also provide the first observed STW altitude profiles, revealing large vertical wavelengths above 200 km. Comparing these observations to four different models suggests the STWs likely originate directly or indirectly from waves from below 97 km. STWs may play an under‐recognized role in the daily variability of the thermosphere‐ionosphere system, warranting further study. 
    more » « less
  5. Abstract We use high temporal‐resolution mesoscale imagery from the Geostationary Operational Environmental Satellite‐R (GOES‐R) series to track the Lamb and gravity waves generated by the 15 January 2022 Hunga Tonga‐Hunga Ha'apai eruption. The 1‐min cadence of these limited area (∼1,000×1,000 km2) brightness temperatures ensures an order of magnitude better temporal sampling than full‐disk imagery available at 10‐min or 15‐min cadence. The wave patterns are visualized in brightness temperature image differences, which represent the time derivative of the full waveform with the level of temporal aliasing being determined by the imaging cadence. Consequently, the mesoscale data highlight short‐period variations, while the full‐disk data capture the long‐period wave packet envelope. The full temperature anomaly waveform, however, can be reconstructed reasonably well from the mesoscale waveform derivatives. The reconstructed temperature anomaly waveform essentially traces the surface pressure anomaly waveform. The 1‐min imagery reveals waves with ∼40–80 km wavelengths, which trail the primary Lamb pulse emitted at ∼04:29 UTC. Their estimated propagation speed is ∼315 ± 15 m s−1, resulting in typical periods of 2.1–4.2 min. Weaker Lamb waves were also generated by the last major eruption at ∼08:40–08:45 UTC, which were, however, only identified in the near field but not in the far field. We also noted wind effects such as mean flow advection in the propagation of concentric gravity wave rings and observed gravity waves traveling near their theoretical maximum speed. 
    more » « less
  6. Abstract. The Hunga Tonga–Hunga Ha′apai volcano erupted on 15 January 2022, launching Lamb waves and gravity waves into the atmosphere. In this study, we present results using 13 globally distributed meteor radars and identify the volcanogenic gravity waves in the mesospheric/lower thermospheric winds. Leveraging the High-Altitude Mechanistic general Circulation Model (HIAMCM), we compare the global propagation of these gravity waves. We observed an eastward-propagating gravity wave packet with an observed phase speed of 240 ± 5.7 m s−1 and a westward-propagating gravity wave with an observed phase speed of 166.5 ± 6.4 m s−1. We identified these waves in HIAMCM and obtained very good agreement of the observed phase speeds of 239.5 ± 4.3 and 162.2 ± 6.1 m s−1 for the eastward the westward waves, respectively. Considering that HIAMCM perturbations in the mesosphere/lower thermosphere were the result of the secondary waves generated by the dissipation of the primary gravity waves from the volcanic eruption, this affirms the importance of higher-order wave generation. Furthermore, based on meteor radar observations of the gravity wave propagation around the globe, we estimate the eruption time to be within 6 min of the nominal value of 15 January 2022 04:15 UTC, and we localized the volcanic eruption to be within 78 km relative to the World Geodetic System 84 coordinates of the volcano, confirming our estimates to be realistic. 
    more » « less