We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract D ≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M ⊙), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M ⊙) at ∼3000R ⊙ejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13. -
Abstract SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mg
ii emission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction (M ⊙yr−1) and find that the power from CSM interaction is decreasing with time, fromL sh≈ 5 × 1042erg s−1toL sh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgii λ λ 2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss. -
Abstract We present comprehensive optical observations of SN 2021gmj, a Type II supernova (SN II) discovered within a day of explosion by the Distance Less Than 40 Mpc survey. Follow-up observations show that SN 2021gmj is a low-luminosity SN II (LL SN II), with a peak magnitude
M V = −15.45 and an Feii velocity of ∼1800 km s−1at 50 days past explosion. Using the expanding photosphere method, we derive a distance of Mpc. From the tail of the light curve we obtain a radioactive nickel mass of = 0.014 ± 0.001M ⊙. The presence of circumstellar material (CSM) is suggested by the early-time light curve, early spectra, and high-velocity Hα in absorption. Analytical shock-cooling models of the light curve cannot reproduce the fast rise, supporting the idea that the early-time emission is partially powered by the interaction of the SN ejecta and CSM. The inferred low CSM mass of 0.025M ⊙in our hydrodynamic-modeling light-curve analysis is also consistent with our spectroscopy. We observe a broad feature near 4600 Å, which may be high-ionization lines of C, N, or/and Heii . This feature is reproduced by radiation-hydrodynamic simulations of red supergiants with extended atmospheres. Several LL SNe II show similar spectral features, implying that high-density material around the progenitor may be common among them. -
Abstract We present high-cadence photometric and spectroscopic observations of supernova (SN) 2024ggi, a Type II SN with flash spectroscopy features, which exploded in the nearby galaxy NGC 3621 at ∼7 Mpc. The light-curve evolution over the first 30 hr can be fit by two power-law indices with a break after 22 hr, rising from
M V ≈ −12.95 mag at +0.66 day toM V ≈ −17.91 mag after 7 days. In addition, the densely sampled color curve shows a strong blueward evolution over the first few days and then behaves as a normal SN II with a redward evolution as the ejecta cool. Such deviations could be due to interaction with circumstellar material (CSM). Early high- and low-resolution spectra clearly show high-ionization flash features from the first spectrum to +3.42 days after the explosion. From the high-resolution spectra, we calculate the CSM velocity to be 37 ± 4 km s−1. We also see the line strength evolve rapidly from 1.22 to 1.49 days in the earliest high-resolution spectra. Comparison of the low-resolution spectra with CMFGEN models suggests that the pre-explosion mass-loss rate of SN 2024ggi falls in the range of 10−3–10−2M ☉yr−1, which is similar to that derived for SN 2023ixf. However, the rapid temporal evolution of the narrow lines in the spectra of SN 2024ggi (R CSM∼ 2.7 × 1014cm) could indicate a smaller spatial extent of the CSM than in SN 2023ixf (R CSM∼ 5.4 × 1014cm), which in turn implies a lower total CSM mass for SN 2024ggi. -
Abstract We present optical and near-infrared (NIR) observations of SN 2022crv, a stripped-envelope supernova in NGC 3054, discovered within 12 hr of explosion by the Distance Less Than 40 Mpc Survey. We suggest that SN 2022crv is a transitional object on the continuum between Type Ib supernovae (SNe Ib) and Type IIb supernovae (SNe IIb). A high-velocity hydrogen feature (∼ −20,000 to −16,000 km s−1) was conspicuous in SN 2022crv at early phases, and then quickly disappeared. We find that a hydrogen envelope of ∼10−3
M ⊙can reproduce the observed behavior of the hydrogen feature. The lack of early envelope cooling emission implies that SN 2022crv had a compact progenitor with an extremely low amount of hydrogen. A nebular spectral analysis shows that SN 2022crv is consistent with the explosion of a He star with a final mass of ∼4.5–5.6M ⊙that evolved from a ∼16 to 22M ⊙zero-age main-sequence star in a binary system with ∼1.0–1.7M ⊙of oxygen finally synthesized in the core. In order to retain such a small amount of hydrogen, the initial orbital separation of the binary system is likely larger than ∼1000R ⊙. The NIR spectra of SN 2022crv show a unique absorption feature on the blue side of the Hei line at ∼1.005μ m. This is the first time such a feature has been observed in SNe Ib/IIb, and it could be due to Sr II. Further detailed modeling of SN 2022crv can shed light on the progenitor and the origin of the mysterious absorption feature in the NIR. -
Abstract We perform a comprehensive search for optical precursor emission at the position of SN 2023ixf using data from the DLT40, ZTF, and ATLAS surveys. By comparing the current data set with precursor outburst hydrodynamical model light curves, we find that the probability of a significant outburst within 5 yr of explosion is low, and the circumstellar material (CSM) ejected during any possible precursor outburst is likely smaller than ∼0.015
M ⊙. By comparing to a set of toy models, we find that, if there was a precursor outburst, the duration must have been shorter than ∼100 days for a typical brightness ofM r ≃ −9 mag or shorter than 200 days forM r ≃ −8 mag; brighter, longer outbursts would have been discovered. Precursor activity like that observed in the normal Type II SN 2020tlf (M r ≃ −11.5) can be excluded in SN 2023ixf. If the dense CSM inferred by early flash spectroscopy and other studies is related to one or more precursor outbursts, then our observations indicate that any such outburst would have to be faint and only last for days to months, or it occurred more than 5 yr prior to the explosion. Alternatively, any dense, confined CSM may not be due to eruptive mass loss from a single red supergiant progenitor. Taken together, the results of SN 2023ixf and SN 2020tlf indicate that there may be more than one physical mechanism behind the dense CSM inferred around some normal Type II supernovae. -
Abstract We present the photometry of 16 91T/99aa-like Type Ia Supernovae (SNe Ia) observed by the Las Cumbres Observatory. We also use an additional set of 21 91T/99aa-like SNe Ia and 87 normal SNe Ia from the literature for an analysis of the standardizability of the luminosity of 91T/99aa-like SNe. We find that 91T/99aa-like SNe are 0.2 mag brighter than normal SNe Ia, even when fully corrected by the light-curve shapes and colors. The weighted rms of the 91T/99aa-like SNe (with z CMB > 0.01) Hubble residuals is 0.25 ± 0.03 mag, suggesting that 91T/99aa-like SNe are also excellent relative distance indicators to ±12%. We compare the Hubble residuals with the pseudo-equivalent width (pEW) of Si ii λλ 6355 around the date of maximum brightness. We find that there is a broken linear correlation between those two measurements for our sample including both 91T/99aa-like and normal SNe Ia. As the pEW max (Si ii λλ 6355) increases, the Hubble residual increases when pEW max (Si ii λλ 6355) < 55.6 Å. However, the Hubble residual stays constant beyond this. Given that 91T/99aa-like SNe possess shallower Si ii lines than normal SNe Ia, the linear correlation at pEW max (Si ii λλ 6355) < 55.6 Å can account for the overall discrepancy of Hubble residuals derived from the two subgroups. Such a systematic effect needs to be taken into account when using SNe Ia to measure luminosity distances.more » « less
-
Abstract We present Hubble Space Telescope (HST) imaging of the site of SN 2015bh in the nearby spiral galaxy NGC 2770 taken between 2017 and 2019, nearly four years after the peak of the explosion. In 2017–2018, the transient fades steadily in optical filters before declining more slowly to
F814W = −7.1 mag in 2019, ≈4 mag below the level of its eruptive luminous blue variable (LBV) progenitor observed with HST in 2008–2009. The source fades at a constant color ofF555W − F814W = 0.4 mag until 2018, similar to SN 2009ip and consistent with a spectrum dominated by interaction of the ejecta with circumstellar material (CSM). A deep optical spectrum obtained in 2021 lacks signatures of ongoing interaction (L Hα ≲ 1038erg s−1for broadened emission ≲2000 km s−1), but indicates the presence of a nearby Hii region (≲300 pc). The color evolution of the fading source makes it unlikely that emission from a scattered-light echo or binary OB companion of the progenitor contributes significantly to the flattening of the late-time light curve. The remaining emission in 2019 may plausibly be attributed an evolved/inflated companion or an unresolved (≲3 pc), young stellar cluster. Importantly, the color evolution of SN 2015bh rules out scenarios in which the surviving progenitor is obscured by nascent dust and does not clearly indicate a transition to a hotter, optically faint state. The simplest explanation is that the massive progenitor did not survive. SN 2015bh likely represents a remarkable example of the terminal explosion of a massive star preceded by decades of end-stage eruptive variability. -
ABSTRACT We report on analysis using the JWST to identify a candidate progenitor star of the Type II-plateau (II-P) supernova SN 2022acko in the nearby, barred spiral galaxy NGC 1300. To our knowledge, our discovery represents the first time JWST has been used to localize a progenitor system in pre-explosion archival Hubble Space Telescope (HST) images. We astrometrically registered a JWST NIRCam image from 2023 January, in which the SN was serendipitously captured, to pre-SN HST F160W and F814W images from 2017 and 2004, respectively. An object corresponding precisely to the SN position has been isolated with reasonable confidence. That object has a spectral energy distribution (SED) and overall luminosity consistent with a single-star model having an initial mass possibly somewhat less than the canonical 8 M⊙ theoretical threshold for core collapse (although masses as high as 9 M⊙ for the star are also possible); however, the star’s SED and luminosity are inconsistent with that of a super-asymptotic giant branch star that might be a forerunner of an electron-capture SN. The properties of the progenitor alone imply that SN 2022acko is a relatively normal SN II-P, albeit most likely a low-luminosity one. The progenitor candidate should be confirmed with follow-up HST imaging at late times, when the SN has sufficiently faded. This potential use of JWST opens a new era of identifying SN progenitor candidates at high spatial resolution.
-
Abstract We present near-infrared (NIR) and optical observations of the Type Ic supernova (SN Ic) SN 2021krf obtained between days 13 and 259 at several ground-based telescopes. The NIR spectrum at day 68 exhibits a rising K -band continuum flux density longward of ∼2.0 μ m, and a late-time optical spectrum at day 259 shows strong [O i ] 6300 and 6364 Å emission-line asymmetry, both indicating the presence of dust, likely formed in the SN ejecta. We estimate a carbon-grain dust mass of ∼2 × 10 −5 M ⊙ and a dust temperature of ∼900–1200 K associated with this rising continuum and suggest the dust has formed in SN ejecta. Utilizing the one-dimensional multigroup radiation-hydrodynamics code STELLA, we present two degenerate progenitor solutions for SN 2021krf, characterized by C–O star masses of 3.93 and 5.74 M ⊙ , but with the same best-fit 56 Ni mass of 0.11 M ⊙ for early times (0–70 days). At late times (70–300 days), optical light curves of SN 2021krf decline substantially more slowly than those expected from 56 Co radioactive decay. Lack of H and He lines in the late-time SN spectrum suggests the absence of significant interaction of the ejecta with the circumstellar medium. We reproduce the entire bolometric light curve with a combination of radioactive decay and an additional powering source in the form of a central engine of a millisecond pulsar with a magnetic field smaller than that of a typical magnetar.more » « less