skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Vanacore, Kirk"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available March 18, 2025
  2. Free, publicly-accessible full text available March 18, 2025
  3. Gaming the system is a persistent problem in Computer-Based Learning Platforms. While substantialprogress has been made in identifying and understanding such behaviors, effective interventions remainscarce. This study uses a method of causal moderation known as Fully Latent Principal Stratification toexplore the impact of two types of interventions – gamification and manipulation of assistance access –on the learning outcomes of students who tend to game the system. The results indicate that gamificationdoes not consistently mitigate these negative behaviors. One gamified condition had a consistentlypositive effect on learning regardless of students’ propensity to game the system, whereas the other had anegative effect on gamers. However, delaying access to hints and feedback may have a positive effect onthe learning outcomes of those gaming the system. This paper also illustrates the potential for integratingdetection and causal methodologies within educational data mining to evaluate effective responses to detectedbehaviors. 
    more » « less
    Free, publicly-accessible full text available January 1, 2025
  4. There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in quick succession, which makes it difficult to discern the effect of any particular intervention on their learning. Therefore, distal measures of learning such as posttests may not provide a clear understanding of which interventions are effective, which can lead to slow adoption of new instructional methods. To help discern the effectiveness of instructional interventions, this work uses data from 26,060 clickstream sequences of students across 31 different online educational experiments exploring 51 different research questions and the students’ posttest scores to create and analyze different proximal surrogate measures of learning that can be used at the problem level. Through feature engineering and deep learning approaches, next-problem correctness was determined to be the best surrogate measure. As more data from online educational experiments are collected, model based surrogate measures can be improved, but for now, next-problem correctness is an empirically effective proximal surrogate measure of learning for analyzing rapid problemlevel experiments. The data and code used in this work can be found at https://osf.io/uj48v/. 
    more » « less
  5. There is a growing need to empirically evaluate the quality of online instructional interventions at scale. In response, some online learning platforms have begun to implement rapid A/B testing of instructional interventions. In these scenarios, students participate in series of randomized experiments that evaluate problem-level interventions in quick succession, which makes it difficult to discern the effect of any particular intervention on their learning. Therefore, distal measures of learning such as posttests may not provide a clear understanding of which interventions are effective, which can lead to slow adoption of new instructional methods. To help discern the effectiveness of instructional interventions, this work uses data from 26,060 clickstream sequences of students across 31 different online educational experiments exploring 51 different research questions and the students’ posttest scores to create and analyze different proximal surrogate measures of learning that can be used at the problem level. Through feature engineering and deep learning approaches, next-problem correctness was determined to be the best surrogate measure. As more data from online educational experiments are collected, model based surrogate measures can be improved, but for now, next-problem correctness is an empirically effective proximal surrogate measure of learning for analyzing rapid problemlevel experiments. The data and code used in this work can be found at https://osf.io/uj48v/. 
    more » « less
  6. Solving mathematical problems is cognitively complex, involving strategy formulation, solution development, and the application of learned concepts. However, gaps in students’ knowledge or weakly grasped concepts can lead to errors. Teachers play a crucial role in predicting and addressing these difficulties, which directly influence learning outcomes. However, preemptively identifying misconcep- tions leading to errors can be challenging. This study leverages historical data to assist teachers in recognizing common errors and addressing gaps in knowledge through feedback. We present a longitudinal analysis of incorrect answers from the 2015-2020 aca- demic years on two curricula, Illustrative Math and EngageNY, for grades 6, 7, and 8. We find consistent errors across 5 years despite varying student and teacher populations. Based on these Common Wrong Answers (CWAs), we designed a crowdsourcing platform for teachers to provide Common Wrong Answer Feedback (CWAF). This paper reports on an in vivo randomized study testing the ef- fectiveness of CWAFs in two scenarios: next-problem-correctness within-skill and next-problem-correctness within-assignment, re- gardless of the skill. We find that receiving CWAF leads to a signifi- cant increase in correctness for consecutive problems within-skill. However, the effect was not significant for all consecutive problems within-assignment, irrespective of the associated skill. This paper investigates the potential of scalable approaches in identifying Com- mon Wrong Answers (CWAs) and how the use of crowdsourced CWAFs can enhance student learning through remediation. 
    more » « less
  7. As evidence grows supporting the importance of non-cognitive factors in learning, computer-assisted learning platforms increasingly incorporate non-academic interventions to influence student learning and learning related-behaviors. Non-cognitive interventions often attempt to influence students’ mindset, motivation, or metacognitive reflection to impact learning behaviors and outcomes. In the current paper, we analyze data from five experiments, involving seven treatment conditions embedded in mastery-based learning activities hosted on a computer-assisted learning platform focused on middle school mathematics. Each treatment condition embodied a specific non-cognitive theoretical perspective. Over seven school years, 20,472 students participated in the experiments. We estimated the effects of each treatment condition on students’ response time, hint usage, likelihood of mastering knowledge components, learning efficiency, and post-tests performance. Our analyses reveal a mix of both positive and negative treatment effects on student learning behaviors and performance. Few interventions impacted learning as assessed by the post-tests. These findings highlight the difficulty in positively influencing student learning behaviors and outcomes using non-cognitive interventions. 
    more » « less
  8. Solving mathematical problems is cognitively complex, involving strategy formulation, solution development, and the application of learned concepts. However, gaps in students' knowledge or weakly grasped concepts can lead to errors. Teachers play a crucial role in predicting and addressing these difficulties, which directly influence learning outcomes. However, preemptively identifying misconceptions leading to errors can be challenging. This study leverages historical data to assist teachers in recognizing common errors and addressing gaps in knowledge through feedback. We present a longitudinal analysis of incorrect answers from the 2015-2020 academic years on two curricula, Illustrative Math and EngageNY, for grades 6, 7, and 8. We find consistent errors across 5 years despite varying student and teacher populations. Based on these Common Wrong Answers (CWAs), we designed a crowdsourcing platform for teachers to provide Common Wrong Answer Feedback (CWAF). This paper reports on an in vivo randomized study testing the effectiveness of CWAFs in two scenarios: next-problem-correctness within-skill and next-problem-correctness within-assignment, regardless of the skill. We find that receiving CWAF leads to a significant increase in correctness for consecutive problems within-skill. However, the effect was not significant for all consecutive problems within-assignment, irrespective of the associated skill. This paper investigates the potential of scalable approaches in identifying Common Wrong Answers (CWAs) and how the use of crowdsourced CWAFs can enhance student learning through remediation. 
    more » « less
  9. Prior work analyzing tutoring sessions provided evidence that highly effective tutors, through their interaction with students and their experience, can perceptively recognize incorrect processes or “bugs” when students incorrectly answer problems. Researchers have studied these tutoring interactions examining instructional approaches to address incorrect processes and observed that the format of the feedback can influence learning outcomes. In this work, we recognize the incorrect answers caused by these buggy processes as Common Wrong Answers (CWAs). We examine the ability of teachers and instructional designers to identify CWAs proactively. As teachers and instructional designers deeply understand the common approaches and mistakes students make when solving mathematical problems, we examine the feasibility of proactively identifying CWAs and generating Common Wrong Answer Feedback (CWAFs) as a formative feedback intervention for addressing student learning needs. As such, we analyze CWAFs in three sets of analyses. We first report on the accuracy of the CWAs predicted by the teachers and instructional designers on the problems across two activities.We then measure the effectiveness of the CWAFs using an intent-to-treat analysis. Finally, we explore the existence of personalization effects of the CWAFs for the students working on the two mathematics activities. 
    more » « less
  10. Prior work analyzing tutoring sessions provided evidence that highly effective tutors, through their interaction with students and their experience, can perceptively recognize incorrect processes or “bugs” when students incorrectly answer problems. Researchers have studied these tutoring interactions examining instructional approaches to address incorrect processes and observed that the format of the feedback can influence learning outcomes. In this work, we recognize the incorrect answers caused by these buggy processes as Common Wrong Answers (CWAs). We examine the ability of teachers and instructional designers to identify CWAs proactively. As teachers and instructional designers deeply understand the common approaches and mistakes students make when solving mathematical problems, we examine the feasibility of proactively identifying CWAs and generating Common Wrong Answer Feedback (CWAFs) as a formative feedback intervention for addressing student learning needs. As such, we analyze CWAFs in three sets of analyses. We first report on the accuracy of the CWAs predicted by the teachers and instructional designers on the problems across two activities. We then measure the effectiveness of the CWAFs using an intent-to-treat analysis. Finally, we explore the existence of personalization effects of the CWAFs for the students working on the two mathematics activities. 
    more » « less