Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Climate change and biodiversity loss require us to engage the next generation of scientists in addressing global ecological issues. Introducing undergraduate students to citizen science allows them to learn scientific processes and content while contributing to real‐world applications. We conducted a systematic review of literature to (1) identify what types of undergraduate courses and institutions use citizen science, (2) list the projects and platforms that have been implemented in online courses in undergraduate education, (3) examine how students participated in the projects through online courses, and (4) summarize learning objectives and reported benefits of student participation. In all, 44 studies about the use of citizen science in undergraduate online courses were found in 25 papers in the published literature. The most common projects consisted of classification of species or natural history (e.g., iNaturalist), which could be done mainly online but with data collection completed at a location available to the student. Citizen science projects were incorporated into multiple course formats (e.g., lecture, lab) and class sizes, and students were most frequently asked to collect and submit data. The most frequently reported learning outcomes included increased student interest/engagement, improved appreciation for the relevance of science to the “real world,” and practice using the scientific process, but rigorous assessment data were lacking in papers. The use of citizen science in online courses and institutions appears to be increasing, and we encourage faculty using these approaches with students to publish on their efforts, providing details about their implementation, assessment, and course context.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Research integrated into higher education curricula has been shown by numerous studies to be beneficial to undergraduate students. Citizen science provides an alternative to research performed in a lab and is gaining traction as a good choice for integration into classes. The Undergraduate Student Experiences in Citizen Science (USE Cit Sci) research collaboration network is working to help more instructors in higher education adopt citizen science as part of their curriculum by providing training and educational materials. To date, the Network has identified areas of critical need for citizen science to be more readily used in higher education courses and created a clearinghouse of lessons for faculty to use freely. Forthcoming products of the USE Cit Sci network include direct partnerships between educators and citizen science projects in addition to a peer mentoring program. Given the preponderance of ecology citizen science projects available, bringing this educational opportunity to students opens new avenues of pedagogical experiences.more » « less
-
Parks, Samantha T (Ed.)The experience of transferring to a 4-year college, especially in STEM programs, can be particularly challenging for students. While much of the onus for preparing students for transfer has been placed on community colleges, the 4-year institutions to which students transfer have critical roles to play. With this in mind, we established the Pre-transfer Interventions, Mentoring, and Experience in Research (PRIMER) program to support students transferring into the biology department at our university. The design of this program is based around the key elements of Schlossberg’s Transition Theory, focusing on the support and strategies elements of the theory. Through a weekly academic skill course, peer mentoring, and informal academic and social supports, our goals were for students to increase their involvement in the campus community and to increase their use of academic support resources. We used qualitative and quantitative assessments to compare sense of community and use of campus resources between students who participated in our program and others. We found that students in our program strongly increased their sense of community during the semester compared to other students and used campus resources at a higher rate. Our insights from the PRIMER program can help others in developing programs to support transfer students in biology departments.more » « less
-
Shaffer, Justin (Ed.)ABSTRACT Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student’s scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group’s process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students’ argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students’ scientific argumentation skills and understanding of science.more » « less
-
Parks, Samantha T (Ed.)Community colleges are frequently an affordable, accessible entrance to a Science, Technology, Engineering, and Mathematics (STEM) education and career, but the transition from a 2-year program to a 4-year institution can be tumultuous. In this mixed-methods study, we explore the experiences of transfer and prospective transfer students. Through surveys and interviews, we identify the challenges faced by and the supports desired by biology transfer students. We describe how community college students perceive their introductory biology courses, and we compare the biology identity and self-efficacy of these students to peers at a 4-year institution. Students expressed uncertainty about what to expect from the transfer experience, and they benefitted from interventions that made the university experience more concrete or clarified their expectations. We found that community college students are just as interested in biology as peers at a 4-year university, but they are significantly less likely to believe that others recognize them as “biology people” and report less self-efficacy regarding biology courses. Students felt particularly well-prepared for transfer after community college biology courses they described as “rigorous” and “demanding,” especially because students expressed that the community college environment helped support them through the challenges of higher education.more » « less
-
Abstract Citizen science involves the public in science to investigate research questions. Although citizen science facilitates learning in informal educational settings, little is known about its use or effects in postsecondary (college or university) settings. Using a literature review and a survey, we describe how and why citizen science is being used in postsecondary courses, as well as the impacts on student learning. We found that citizen science is used predominantly in biologically related fields, at diverse types of institutions, to improve student engagement and expose students to authentic research. Considerable anecdotal evidence supporting improved student learning from these experiences exists, but little empirical evidence exists to warrant any conclusion. Therefore, there is a need to rigorously assess the relationship between citizen science participation and postsecondary student learning. We highlight considerations for instructors planning to incorporate citizen science and for citizen science projects wanting to facilitate postsecondary use.more » « less
An official website of the United States government
