skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using an Observation Protocol To Evaluate Student Argumentation Skills in Introductory Biology Laboratories
ABSTRACT Argumentation is vital in the development of scientific knowledge, and students who can argue from evidence and support their claims develop a deeper understanding of science. In this study, the Argument-Driven Inquiry instruction model was implemented in a two-semester sequence of introductory biology laboratories. Student’s scientific argumentation sessions were video recorded and analyzed using the Assessment of Scientific Argumentation in the Classroom observation protocol. This protocol separates argumentation into three subcategories: cognitive (how the group develops understanding), epistemic (how consistent the group’s process is with the culture of science), and social (how the group members interact with each other). We asked whether students are equally skilled in all subcategories of argumentation and how students’ argumentation skills differ based on lab exercise and course. Students scored significantly higher on the social than the cognitive and epistemic subcategories of argumentation. Total argumentation scores were significantly different between the two focal investigations in Biology Laboratory I but not between the two focal investigations in Biology Laboratory II. Therefore, student argumentation skills were not consistent across content; the design of the lab exercises and their implementation impacted the level of argumentation that occurred. These results will ultimately aid in the development and expansion of Argument-Driven Inquiry instructional models, with the goal of further enhancing students’ scientific argumentation skills and understanding of science.  more » « less
Award ID(s):
1725655
PAR ID:
10465532
Author(s) / Creator(s):
; ; ;
Editor(s):
Shaffer, Justin
Date Published:
Journal Name:
Journal of Microbiology & Biology Education
Volume:
24
Issue:
2
ISSN:
1935-7877
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In this presentation, the research team discussed teachers' facilitation of argumentation in teaching computer programming (or coding) and how it related to their epistemic beliefs about mathematics and science. The preliminary results showed that teachers engaged their students in both justificatory and inquiry arguments when teaching coding. This was not the case with respect to mathematics and science, in which teachers described engaging students either in justificatory or inquiry argumentation exclusively. The team proposes that these siloed uses of argumentation in mathematics and science relate to the teachers' epistemic beliefs about the disciplines, and their use of argumentation in coding builds on and goes beyond their experiences with argumentation in teaching mathematics and science. 
    more » « less
  2. Science learning is thought to be best supported when students engage in sensemaking about phenomena in ways that mirror the work of scientists, work that requires that students are positioned as epistemic agents who share, discuss, and refine their thinking to make sense of science phenomena. Using a case study approach, we explore the experiences of one Black middle school girl, Jessie’s, epistemic efforts and the ways in which her group members’ responses to her efforts either supported or constrained her epistemic agency during small group work in two argumentation lessons. We view this work through the lenses of epistemic aspects of scientific argumentation, rhetorical argumentation, and pseudo argumentation. Our findings show that Jessie’s epistemic efforts were not often taken up by her peers in ways that support her epistemic agency, findings that have implications for student learning and engagement in terms of the epistemic work we ask students to engage in, and the instructional strategies that support this work. 
    more » « less
  3. null (Ed.)
    Augmented reality (AR) has the potential to fundamentally transform science education by making learning of abstract science ideas tangible and engaging. However, little is known about how students interacted with AR technologies and how these interactions may affect learning performance in science laboratories. This study examined high school students’ navigation patterns and science learning with a mobile AR technology, developed by the research team, in laboratory settings. The AR technology allows students to conduct hands-on laboratory experiments and interactively explore various science phenomena covering biology, chemistry, and physics concepts. In this study, seventy ninth-grade students carried out science laboratory experiments in pairs to learn thermodynamics. Our cluster analysis identified two groups of students, which differed significantly in navigation length and breadth. The two groups demonstrated unique navigation patterns that revealed students’ various ways of observing, describing, exploring, and evaluating science phenomena. These navigation patterns were associated with learning performance as measured by scores on lab reports. The results suggested the need for providing access to multiple representations and different types of interactions with these representations to support effective science learning as well as designing representations and connections between representations to cultivate scientific reasoning skills and nuanced understanding of scientific processes. 
    more » « less
  4. If we are to support students to become epistemic agents in the ways envisioned in reforms, we must acknowledge that classrooms can be spaces of injustice, where instructional efforts can propagate inequitable systems of oppression. In this case study, we describe the epistemic efforts of one Black girl, Jessie, and the rights and privileges afforded or denied to her as she worked with a group of her peers to develop and negotiate a scientific claim. Through examination of video data, transcripts, and student work products, we characterized students’ efforts as about epistemic, rhetorical, and pseudo-argumentation, and how we explored how such efforts invited or constrained Jessie’s epistemic agency. Jessie’s pattern of persistence, which we understand to be her fight to have her rights as a scientific sensemaker acknowledged, surfaced issues of inequity in which Jessie’s ongoing efforts to engage in epistemic argumentation were rejected by her peers. 
    more » « less
  5. null (Ed.)
    Here we evaluate undergraduate student attitudes about science after each of three authentic research experiences in a semester of an introductory biology laboratory course at Utah State University. The three course-based research experiences (CUREs) vary in length and student freedom, and they cover different areas of biology. Students responded to the science attitude items of the CURE Survey. When compared to national data, our students faired similarly, and all students struggled with certain epistemic assumptions about science knowledge. As also seen in the national database, change in science attitude was slight and nonlinear. Student self confidence in what a career scientist is and in scientific process skills was the best predictor of scientific maturity, not the three CUREs or other aspects of students’ background. We discuss the slight positive and negative change in attitude we did influence, and we note that most students would choose to have another research experience. 
    more » « less