skip to main content


Search for: All records

Creators/Authors contains: "Vasisht, Deepak"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Millimeter-wave (mmWave) radar is increasingly being considered as an alternative to optical sensors for robotic primitives like simultaneous localization and mapping (SLAM). While mmWave radar overcomes some limitations of optical sensors, such as occlusions, poor lighting conditions, and privacy concerns, it also faces unique challenges, such as missed obstacles due to specular reflections or fake objects due to multipath. To address these challenges, we propose Radarize, a self-contained SLAM pipeline that uses only a commodity single-chip mmWave radar. Our radar-native approach uses techniques such as Doppler shift-based odometry and multipath artifact suppression to improve performance. We evaluate our method on a large dataset of 146 trajectories spanning 4 buildings and mounted on 3 different platforms, totaling approximately 4.7 Km of travel distance. Our results show that our method outperforms state-of-the-art radar and radar inertial approaches by approximately 5x in terms of odometry and 8x in terms of end-to end SLAM, as measured by absolute trajectory error (ATE), without the need for additional sensors such as IMUs or wheel encoders. 
    more » « less
    Free, publicly-accessible full text available June 3, 2025
  2. Earth observation Low Earth Orbit (LEO) satellites collect enormous amounts of data that needs to be transferred first to ground stations and then to the cloud, for storage and processing. Satellites today transmit data greedily to ground stations, with full utilization of bandwidth during each contact period. We show that due to the layout of ground stations and orbital characteristics, this approach overloads some ground stations and underloads others, leading to lost throughput and large end-to-end latency for images. We present a new end-to-end scheduler system called Umbra, which plans transfers from large satellite constellations through ground stations to the cloud, by accounting for both spatial and temporal factors, i.e., orbital dynamics, bandwidth constraints, and queue sizes. At the heart of Umbra is a new class of scheduling algorithms called withhold scheduling, wherein the sender (i.e., satellite) selectively under-utilizes some links to ground stations. We show that Umbra’s counter-intuitive approach increases throughput by 13-31% & reduces P90 latency by 3-6 X. 
    more » « less
  3. Unmanned aerial vehicles (UAVs) rely on optical sensors such as cameras and lidar for autonomous operation. However, such optical sensors are error-prone in bad lighting, inclement weather conditions including fog and smoke, and around textureless or transparent surfaces. In this paper, we ask: is it possible to fly UAVs without relying on optical sensors, i.e., can UAVs fly without seeing? We present BatMobility, a lightweight mmWave radar-only perception system for UAVs that eliminates the need for optical sensors. BatMobility enables two core functionalities for UAVs – radio flow estimation (a novel FMCW radar-based alternative for optical flow based on surface-parallel doppler shift) and radar-based collision avoidance. We build BatMobility using commodity sensors and deploy it as a real-time system on a small off-the-shelf quadcopter running an unmodified flight controller. Our evaluation shows that BatMobility achieves comparable or better performance than commercial-grade optical sensors across a wide range of scenarios. 
    more » « less
  4. Machine Learning (ML) is an increasingly popular tool for designing wireless systems, both for communication and sensing applications. We design and evaluate the impact of practically feasible adversarial attacks against such ML-based wireless systems. In doing so, we solve challenges that are unique to the wireless domain: lack of synchronization between a benign device and the adversarial device, and the effects of the wireless channel on adversarial noise. We build, RAFA (RAdio Frequency Attack), the first hardware-implemented adversarial attack platform against ML-based wireless systems, and evaluate it against two state-of-the-art communication and sensing approaches at the physical layer. Our results show that both these systems experience a significant performance drop in response to the adversarial attack 
    more » « less
  5. This paper presents ISLA, a system that enables low power IoT nodes to self-localize using ambient 5G signals without any coordination with the base stations. ISLA operates by simply overhearing transmitted 5G packets and leverages the large bandwidth used in 5G to compute high-resolution time of flight of the signals. Capturing large 5G bandwidth consumes a lot of power. To address this, ISLA leverages recent advances in MEMS acoustic resonators to design a RF filter that can stretch the effective localization bandwidth to 100 MHz while using 6.25 MHz receivers, improving ranging resolution by 16x. We implement and evaluate ISLA in three large outdoors testbeds and show high localization accuracy that is comparable with having the full 100 MHz bandwidth. 
    more » « less