- Award ID(s):
- 1908888
- PAR ID:
- 10472789
- Publisher / Repository:
- ACM
- Date Published:
- Journal Name:
- ACM MobiCom '23: Proceedings of the 29th Annual International Conference on Mobile Computing and Networking
- ISBN:
- 9781450399906
- Page Range / eLocation ID:
- 1 to 15
- Format(s):
- Medium: X
- Location:
- Madrid Spain
- Sponsoring Org:
- National Science Foundation
More Like this
-
Earth observation satellites, in low Earth orbits, are increasingly approaching near-continuous imaging of the Earth. Today, these satellites capture an image of every part of Earth every few hours. However, the networking capabilities haven’t caught up, and can introduce delays of few hours to days in getting these images to Earth. While this delay is acceptable for delay-tolerant applications like land cover maps, crop type identification, etc., it is unacceptable for latency-sensitive applications like forest fire detection or disaster monitoring. We design Serval to enable near-realtime insights from Earth imagery for latency-sensitive applications despite the networking bottlenecks by leveraging the emerging computational capabilities on the satellites and ground stations. The key challenge for our work stems from the limited computational capabilities and power resources available on a satellite. We solve this challenge by leveraging predictability in satellite orbits to bifurcate computation across satellites and ground stations. We evaluate Serval using trace-driven simulations and hardware emulations on a dataset comprising ten million images captured using the Planet Dove constellation comprising nearly 200 satellites. Serval reduces end-to-end latency for high priority queries from 71.71 hours (incurred by state of the art) to 2 minutes, and 90-th percentile from 149 hours to 47 minutes.more » « less
-
Recent technological advancements in satellite based quantum communication has made it a promising technology for realizing global scale quantum networks. Due to better loss distance scaling compared to ground based fiber communication, satellite quantum communication can distribute high quality quantum entanglements among ground stations that are geographically separated at very long distances. This work focuses on optimal distribution of bipartite entanglements to a set of pair of ground stations using a constellation of orbiting satellites. In particular, we characterize the optimal satellite-to-ground station transmission scheduling policy with respect to the aggregate entanglement distribution rate subject to various resource constraints at the satellites and ground stations. We cast the optimal transmission scheduling problem as an integer linear programming problem and solve it efficiently for some specific scenarios. Our framework can also be used as a benchmark tool to measure the performance of other potential transmission scheduling policies.more » « less
-
LEO satellite networks possess highly dynamic topologies, with satellites moving at 27,000 km/hour to maintain their orbit. As satellites move, the characteristics of the satellite network routes change, triggering rerouting events. Frequent rerouting can cause poor performance for path-adaptive algorithms (e.g., congestion control). In this paper, we provide a thorough characterization of route variability in LEO satellite networks, focusing on route churn and RTT variability. We show that high route churn is common, with most paths used for less than half of their lifetime. With some paths used for just a few seconds. This churn is also unnecessary with rerouting leading to marginal gains in most cases (e.g., less than a 15% reduction in RTT). Moreover, we show that the high route churn is harmful to network utilization and congestion control performance. By examining RTT variability, we find that the smallest achievable RTT between two ground stations can increase by 2.5x as satellites move in their orbits. We show that the magnitude of RTT variability depends on the location of the communicating ground stations, exhibiting a spatial structure. Finally, we show that adding more satellites, and providing more routes between stations, does not necessarily reduce route variability. Rather, constellation configuration (i.e., the number of orbits and their inclination) plays a more significant role. We hope that the findings of this study will help with designing more robust routing algorithms for LEO satellite networks.more » « less
-
Recent years have seen the rapid deployment of low-cost CubeSats in low-Earth orbit, many of which experience significant latency (several hours) from the time information is gathered to the time it is communicated to the ground. This is primarily due to the limited availability of ground infrastructure that is bulky to deploy and expensive to rent. This article explores the opportunity in leveraging the extensive terrestrial LoRa infrastructure as a solution. However, the limited bandwidth and large amount of Doppler on CubeSats precludes these LoRa links to communicate rich satellite Earth images—instead, the CubeSats can at best send short messages. This article details our experience in designing LoRa-based satellite ground infrastructure that requires software-only modifications to receive packets from LoRa-enabled CubeSats recently launched by our team. We present Vista, a communication system that adapts encoding onboard the CubeSat and decoding configuration on commercial LoRa ground stations to allow images to be communicated. We perform a detailed evaluation of Vista by leveraging wireless channel measurements from a recent CubeSat (2021), and show that Vista can achieve 55.55% lower latency in retrieving data with 12.02 dB improvement in packet retrieval in the presence of terrestrial interference. We then evaluate Vista on a case study on land-use classification over images transmitted over the CubeSat link to further demonstrate a 4.56 dB improvement in image PSNR and 1.38× increase in classification accuracy over baseline approaches.
-
Abstract Graphical fluid simulations are CPU‐bound. Parallelizing simulations on hundreds of cores in the computing cloud would make them faster, but requires evenly balancing load across nodes. Good load balancing depends on manual decisions from experts, which are time‐consuming and error prone, or dynamic approaches that estimate and react to future load, which are non‐deterministic and hard to debug.
This paper proposes Birdshot scheduling, an automatic and purely static load balancing algorithm whose performance is close to expert decisions and reactive algorithms without their difficulty or complexity. Birdshot scheduling's key insight is to leverage the high‐latency, high‐throughput, full bisection bandwidth of cloud computing nodes. Birdshot scheduling splits the simulation domain into many micro‐partitions and statically assigns them to nodes randomly. Analytical results show that randomly assigned micro‐partitions balance load with high probability. The high‐throughput network easily handles the increased data transfers from micro‐partitions, and full bisection bandwidth allows random placement with no performance penalty. Overlapping the communications and computations of different micro‐partitions masks latency.
Experiments with particle‐level set, SPH, FLIP and explicit Eulerian methods show that Birdshot scheduling speeds up simulations by a factor of 2‐3, and can out‐perform reactive scheduling algorithms. Birdshot scheduling performs within 21% of state‐of‐the‐art dynamic methods that require running a second, parallel simulation. Unlike speculative algorithms, Birdshot scheduling is purely static: it requires no controller, runtime data collection, partition migration or support for these operations from the programmer.