- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000001001000100
- More
- Availability
-
21
- Author / Contributor
- Filter by Author / Creator
-
-
Byrne, Duncan (3)
-
Holschuh, Nicholas (3)
-
Medley, Brooke (3)
-
Sauthoff, Wilson (3)
-
Verboncoeur, Hannah (3)
-
Siegfried, Matthew (2)
-
Sutterley, Tyler (2)
-
Winberry, Paul (2)
-
Siegfried, Matthew Ross (1)
-
Sutterley, Tyler Clark (1)
-
Winberry, Jeremy Paul (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
v2.0 of this dataset includes: All surface-elevation change (dh/dt) data from ICESat, CryoSat-2, and ICESat-2 altimetry missions necessary to reproduce figures and analysis from Verboncoeur et al. (2024) ('*dhdt_smb'); a file containing x,y positions of the ad-hoc reference tracks formed around ICESat ground tracks ('xy_is_masked.csv'); a folder containing delineated boundaries used in analysis ('SHAPES.zip'); folders containing raw subsetted ICESat data ('IS_data.zip') and a folder containing CryoCloud scripts for downloading ICESat-2 data ('IS2_processing_cryocloud.zip')more » « less
-
Verboncoeur, Hannah; Siegfried, Matthew; Holschuh, Nicholas; Winberry, Paul; Byrne, Duncan; Sauthoff, Wilson; Sutterley, Tyler; Medley, Brooke (, Zenodo)Initial staging of code associated with Verboncoeur and others (2024) in Journal of Glaciology. Contact Hannah at hverboncoeur@mines.edu with questions. Data associated with this code can be found on Zenodo here. GitHub: https://github.com/hverboncoeur/Verboncoeur2024-JoGmore » « less
-
Verboncoeur, Hannah; Siegfried, Matthew Ross; Holschuh, Nicholas; Winberry, Jeremy Paul; Byrne, Duncan; Sauthoff, Wilson; Sutterley, Tyler Clark; Medley, Brooke (, Journal of Glaciology)Abstract The ongoing deceleration of Whillans Ice Stream, West Antarctica, provides an opportunity to investigate the co-evolution of ice-shelf pinning points and ice-stream flux variability. Here, we construct and analyze a 20-year multi-mission satellite altimetry record of dynamic ice surface-elevation change (dh/dt) in the grounded region encompassing lower Whillans Ice Stream and Crary Ice Rise, a major pinning point of Ross Ice Shelf. We developed a new method for generating multi-mission time series that reduces spatial bias and implemented this method with altimetry data from the Ice, Cloud, and land Elevation Satellite (ICESat; 2003–09), CryoSat-2 (2010–present), and ICESat-2 (2018–present) altimetry missions. We then used thedh/dttime series to identify persistent patterns of surface-elevation change and evaluate regional mass balance. Our results suggest a persistent anomalous reduction in ice thickness and effective backstress in the peninsula connecting Whillans Ice Plain to Crary Ice Rise. The multi-decadal observational record of pinning-point mass redistribution and grounding zone retreat presented in this study highlights the on-going reorganization of the southern Ross Ice Shelf embayment buttressing regime in response to ice-stream deceleration.more » « lessFree, publicly-accessible full text available January 1, 2026
An official website of the United States government
