skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Verma, Anita"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Unlike naturally occurring oxide crystals such as ruby and gemstones, there are no naturally occurring nitride crystals because the triple bond of the nitrogen molecule is one of the strongest bonds in nature. Here, we report that when the transition metal scandium is subjected to molecular nitrogen, it self-catalyzes to break the nitrogen triple bond to form highly crystalline layers of ScN, a semiconductor. This reaction proceeds even at room temperature. Self-activated ScN films have a twin cubic crystal structure, atomic layering, and electronic and optical properties comparable to plasma-based methods. We extend our research to showcase Sc’s scavenging effect and demonstrate self-activated ScN growth under various growth conditions and on technologically significant substrates, such as 6H–SiC, AlN, and GaN. Ab initio calculations elucidate an energetically efficient pathway for the self-activated growth of crystalline ScN films from molecular N2. The findings open a new pathway to ultralow-energy synthesis of crystalline nitride semiconductor layers and beyond. 
    more » « less