A light breeze rising over calm water initiates an intricate chain of events that culminates in a centimetres-deep turbulent shear layer capped by gravity–capillary ripples. At first, viscous stress accelerates a laminar wind-drift layer until small surface ripples appear. The surface ripples then catalyse the growth of a second instability in the wind-drift layer, which eventually sharpens into along-wind jets and downwelling plumes, before devolving into three-dimensional turbulence. In this paper, we compare laboratory experiments with simplified, wave-averaged numerical simulations of wind-drift layer evolution beneath monochromatic, constant-amplitude surface ripples seeded with random initial perturbations. Despite their simplicity, our simulations reproduce many aspects of the laboratory-based observations – including the growth, nonlinear development and turbulent breakdown the wave-catalysed instability – generally validating our wave-averaged model. But we also find that the simulated development of the wind-drift layer is disturbingly sensitive to the amplitude of the prescribed surface wave field, such that agreement is achieved through suspiciously careful tuning of the ripple amplitude. As a result of this sensitivity, we conclude that wave-averaged models should really describe the coupled evolution of the surface waves together with the flow beneath to be regarded as truly ‘predictive’.
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 10, 2024
-
The momentum and energy exchanges at the ocean surface are central factors determining the sea state, weather patterns and climate. To investigate the effects of surface waves on the air–sea energy exchanges, we analyse high-resolution laboratory measurements of the airflow velocity acquired above wind-generated surface waves using the particle image velocimetry technique. The velocity fields were further decomposed into the mean, wave-coherent and turbulent components, and the corresponding energy budgets were explored in detail. We specifically focused on the terms of the budget equations that represent turbulence production, wave production and wave–turbulence interactions. Over wind waves, the turbulent kinetic energy (TKE) production is positive at all heights with a sharp peak near the interface, indicating the transfer of energy from the mean shear to the turbulence. Away from the surface, however, the TKE production approaches zero. Similarly, the wave kinetic energy (WKE) production is positive in the lower portion of the wave boundary layer (WBL), representing the transfer of energy from the mean flow to the wave-coherent field. In the upper part of the WBL, WKE production becomes slightly negative, wherein the energy is transferred from the wave perturbation to the mean flow. The viscous and Stokes sublayer heights emerge as natural vertical scales for the TKE and WKE production terms, respectively. The interactions between the wave and turbulence perturbations show an energy transfer from the wave to the turbulence in the bulk of the WBL and from the turbulence to the wave in a thin layer near the interface.more » « less
-
Abstract The quantification of pressure fields in the airflow over water waves is fundamental for understanding the coupling of the atmosphere and the ocean. The relationship between the pressure field, and the water surface slope and velocity, are crucial in setting the fluxes of momentum and energy. However, quantifying these fluxes is hampered by difficulties in measuring pressure fields at the wavy air-water interface. Here we utilise results from laboratory experiments of wind-driven surface waves. The data consist of particle image velocimetry of the airflow combined with laser-induced fluorescence of the water surface. These data were then used to develop a pressure field reconstruction technique based on solving a pressure Poisson equation in the airflow above water waves. The results allow for independent quantification of both the viscous stress and pressure-induced form drag components of the momentum flux. Comparison of these with an independent bulk estimate of the total momentum flux (based on law-of-the-wall theory) shows that the momentum budget is closed to within approximately 5%. In the partitioning of the momentum flux between viscous and pressure drag components, we find a greater influence of form drag at high wind speeds and wave slopes. An analysis of the various approximations and assumptions made in the pressure reconstruction, along with the corresponding sources of error, is also presented.more » « less
-
Reliable estimates of the fluxes of momentum, heat and moisture at the air–sea interface are essential for accurate long-term climate projections, as well as the prediction of short-term weather events such as tropical cyclones. In recent years, it has been suggested that these estimates need to incorporate an accurate description of the transport of sea spray within the atmospheric boundary layer and the drop-induced fluxes of momentum, heat and moisture, so that the resulting effects on atmospheric flow can be evaluated. In this paper we propose a model based on a theoretical and mathematical framework inspired from kinetic gas theory. This approach reconciles the Lagrangian nature of spray transport with the Eulerian description of the atmosphere. In turn, this enables a relatively straightforward inclusion of the spray fluxes and the resulting spray effects on the atmospheric flow. A comprehensive dimensional analysis has led us to identify the spray effects that are most likely to influence the speed, temperature and moisture of the airflow. We also provide an example application to illustrate the capabilities of the model in specific environmental conditions. Finally, suggestions for future work are offered.more » « less
-
Three‐Dimensional Measurements of Air Entrainment and Enhanced Bubble Transport During Wave Breaking
Abstract We experimentally investigate the depth distributions and dynamics of air bubbles entrained by breaking waves in a wind‐wave channel over a range of breaking wave conditions using high‐resolution imaging and three‐dimensional bubble tracking. Below the wave troughs, the bubble concentration decays exponentially with depth. Patches of entrained bubbles are identified for each breaking wave, and statistics describing the horizontal and vertical transport are presented. Aggregating our results, we find a stream‐wise transport faster than the associated Stokes drift and modified Stokes drift for buoyant particles, which is an effect not accounted for in current models of bubble transport. This enhancement in transport is attributed to the flow field induced by the breaking waves and is relevant for the transport of bubbles, oil droplets, and microplastics at the ocean surface.
-
Turbulent processes in the ocean surface boundary layer (OSBL) play a key role in weather and climate systems. This study explores a Lagrangian analysis of wave-driven OSBL turbulence, based on a large-eddy simulation (LES) model coupled to a Lagrangian stochastic model (LSM). Langmuir turbulence (LT) is captured by Craik–Leibovich wave forcing that generates LT through the Craik–Leibovich type 2 (CL2) mechanism. Breaking wave (BW) effects are modeled by a surface turbulent kinetic energy flux that is constrained by wind energy input to surface waves. Unresolved LES subgrid-scale (SGS) motions are simulated with the LSM to be energetically consistent with the SGS model of the LES. With LT, Lagrangian autocorrelations of velocities reveal three distinct turbulent time scales: an integral, a dispersive mixing, and a coherent structure time. Coherent structures due to LT result in relatively narrow peaks of Lagrangian frequency velocity spectra. With and without waves, the high-frequency spectral tail is consistent with expectations for the inertial subrange, but BWs substantially increase spectral levels at high frequencies. Consistently, over short times, particle-pair dispersion results agree with the Richardson–Obukhov law, and near-surface dispersion is significantly enhanced because of BWs. Over longer times, our dispersion results are consistent with Taylor dispersion. In this case, turbulent diffusivities are substantially larger with LT in the crosswind direction, but reduced in the along-wind direction because of enhanced turbulent transport by LT that reduces mean Eulerian shear. Our results indicate that the Lagrangian analysis framework is effective and physically intuitive to characterize OSBL turbulence.