skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vetturini, Anthony"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Recent advances in computer-aided design tools have helped rapidly advance the development of wireframe DNA origami nanostructures. Specifically, automated tools now exist that can convert an input polyhedral mesh into a DNA origami nanostructure, greatly reducing the design difficulty for wireframe DNA origami nanostructures. However, one limitation of these automated tools is that they require a designer to fully conceptualize their intended nanostructure, which may be limited by their own preconceptions. Here, a generative design framework is introduced capable of generating many wireframe DNA origami nanostructures without the need for a predefined mesh. User-defined objectives that guide the generative process are input as either single- or multi-objective optimization problems. A graph grammar is used to both contextualize physical properties of the DNA nanostructure and control the types of generated design features. This framework allows a designer to explore upon and ideate among many generated nanostructures that comply with their own unique constraints. A web-based graphical user interface is provided, allowing users to compare various generated solutions side by side in an interactive environment. Overall, this work illustrates how a constrained generative design framework can be implemented as an assistive tool in exploring design-feature trade-offs of wireframe DNA nanostructures, resulting in novel wireframe nanostructures. 
    more » « less
  2. There are no existing experimental studies of flame spread rate trends for ultra-thin solid samples. Previous theory has predicted that for concurrent flame in kinetic regime, the flame spread rate decreases as the sample thickness decreases and there is a critical thickness below which burning is not possible. To test this hypothesis, a series of microgravity experiments of concurrent-flow flame spread over samples of ultra-low area densities are conducted using NASA Glenn Research Center’s Zero Gravity Research Facility (the 5.18 s drop tower). The tested samples are cellulose-based materials of various area densities, ranging from 0.2 mg/cm2 to 13 mg/cm2, as low as one order of magnitude less than those ever tested before. Each sample is 30 cm long by 5 cm wide and is burned in a low-speed concurrent air flow (5 to 30 cm/s). The results show that the concurrent flame spread rate is proportional to the flow velocity relative to the flame and is inversely proportional to the sample area density. A theoretical formulation, provided in this work, suggests that the flame length has a linear relationship with the relative flow speed and has no direct dependency on the sample area density. The experimental data supports this conclusion. From the images recorded in the experiments, a unique flame base tubular structure directed upstream away from the burnout zone is observed for thin samples. This structure is suspected to be due to flame stretching and localized blowoff caused by the oxidative pyrolysis Stefan flows at the sample burnout. This can be an indication that the chemical time becomes comparable to the flow time of the Stefan flow and the tested samples are approaching the kinetically-limited thickness. For the thinnest tested sample (0.2 mg/cm2), flames with concurrent and opposed dual natures are observed when the air flow rate is low (< 20 cm/s). At the lowest tested flow rate (5 cm/s), the flame spread rate exceeds the air flow rate and the flame transits to an opposed flame in the concurrent flow. The dual nature and flame transition are presented and discussed. This study provides detailed examination through high-resolution images of the transition between the concurrent to opposed flame spread modes. 
    more » « less