skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Villas_Bôas, Ana B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Ocean turbulence at meso- and submesocales affects the propagation of surface waves through refraction and scattering, inducing spatial modulations in significant wave height (SWH). We develop a theoretical framework that relates these modulations to the current that induces them. We exploit the asymptotic smallness of the ratio of typical current speed to wave group speed to derive a linear map – the U2H map – between surface current velocity and SWH anomaly. The U2H map is a convolution, non-local in space, expressible as a product in Fourier space by a factor independent of the magnitude of the wavenumber vector. Analytic expressions of the U2H map show how the SWH responds differently to the vortical and divergent parts of the current, and how the anisotropy of the wave spectrum is key to large current-induced SWH anomalies. We implement the U2H map numerically and test its predictions against WAVEWATCH III numerical simulations for both idealised and realistic current configurations. 
    more » « less
    Free, publicly-accessible full text available February 25, 2026
  2. The particle trajectories in irrotational, incompressible and inviscid deep-water surface gravity waves are open, leading to a net drift in the direction of wave propagation commonly referred to as the Stokes drift, which is responsible for catalysing surface wave-induced mixing in the ocean and transporting marine debris. A balance between phase-averaged momentum density, kinetic energy density and vorticity for irrotational, monochromatic and spatially periodic two-dimensional water waves is derived by working directly within the Lagrangian reference frame, which tracks particle trajectories as a function of their labels and time. This balance should be expected as all three of these quantities are conserved following particles in this system. Vorticity in particular is always conserved along particles in two-dimensional inviscid flow, and as such even in its absence it is the value of the vorticity that fundamentally sets the drift, which in the Lagrangian frame is identified as the phase-averaged momentum density of the system. A relationship between the drift and the geometric mean water level of particles is found at the surface, which highlights connections between the geometry and dynamics. Finally, an example of an initially quiescent fluid driven by a wavelike pressure disturbance is considered, showing how the net momentum and energy from the surface pressure disturbance transfer to the wave field, and recognizing the source of the mean Lagrangian drift as the net momentum required to generate an irrotational surface wave by any conservative force. 
    more » « less