Abstract We examine a two-dimensional deep-water surface gravity wave packet generated by a pressure disturbance in the Lagrangian reference frame. The pressure disturbance has the form of a narrow-banded weakly nonlinear deep-water wave packet. During forcing, the vorticity equation implies that the momentum resides entirely in the near-surface Lagrangian-mean flow, which in this context is often called the “Stokes drift”. After the forcing turns off, the wave packet propagates away from the forcing region, carrying with it most of the energy imparted by the forcing. These waves together with their induced long wave response have no momentum in a depth integrated sense, in agreement with the classical results of Longuet-Higgins and Stewart (Deep Sea Research and Oceanographic Abstracts 11, 592−562) and McIntyre (Journal of Fluid Mechanics 106, 331−347). The total flow associated with the propagating packet has no net momentum. In contrast with the finite-depth scenario discussed by McIntyre (Journal of Fluid Mechanics 106, 331−347), however, momentum imparted to the fluid during forcing resides in a dipolar structure that persists in the forcing region—rather than being carried away by shallow-water waves. We conclude by examining waves propagating from deep to shallow water and show that wave packets, which initially have no momentum, may have non-zero momentum in finite-depth water through reflected and trapped long waves. This explains how deep water waves acquire momentum as they approach shore. The artificial form of the parameterized forcing from the wind facilitates the thought experiments considered in this paper, as opposed to striving to model more realistic wind forcing scenarios.
more »
« less
This content will become publicly available on October 25, 2025
Momentum, energy and vorticity balances in deep-water surface gravity waves
The particle trajectories in irrotational, incompressible and inviscid deep-water surface gravity waves are open, leading to a net drift in the direction of wave propagation commonly referred to as the Stokes drift, which is responsible for catalysing surface wave-induced mixing in the ocean and transporting marine debris. A balance between phase-averaged momentum density, kinetic energy density and vorticity for irrotational, monochromatic and spatially periodic two-dimensional water waves is derived by working directly within the Lagrangian reference frame, which tracks particle trajectories as a function of their labels and time. This balance should be expected as all three of these quantities are conserved following particles in this system. Vorticity in particular is always conserved along particles in two-dimensional inviscid flow, and as such even in its absence it is the value of the vorticity that fundamentally sets the drift, which in the Lagrangian frame is identified as the phase-averaged momentum density of the system. A relationship between the drift and the geometric mean water level of particles is found at the surface, which highlights connections between the geometry and dynamics. Finally, an example of an initially quiescent fluid driven by a wavelike pressure disturbance is considered, showing how the net momentum and energy from the surface pressure disturbance transfer to the wave field, and recognizing the source of the mean Lagrangian drift as the net momentum required to generate an irrotational surface wave by any conservative force.
more »
« less
- Award ID(s):
- 2342714
- PAR ID:
- 10586633
- Publisher / Repository:
- Cambridge University Press
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 997
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The role of the Lagrangian mean flow, or drift, in modulating the geometry, kinematics and dynamics of rotational and irrotational deep-water surface gravity waves is examined. A general theory for permanent progressive waves on an arbitrary vertically sheared steady Lagrangian mean flow is derived in the Lagrangian reference frame and mapped to the Eulerian frame. A Lagrangian viewpoint offers tremendous flexibility due to the particle labelling freedom and allows us to reveal how key physical wave behaviour arises from a kinematic constraint on the vorticity of the fluid, inter alia the nonlinear correction to the phase speed of irrotational finite amplitude waves, the free surface geometry and velocity in the Eulerian frame, and the connection between the Lagrangian drift and the Benjamin–Feir instability. To complement and illustrate our theory, a small laboratory experiment demonstrates how a specially tailored sheared mean flow can almost completely attenuate the Benjamin–Feir instability, in qualitative agreement with the theory. The application of these results to problems in remote sensing and ocean wave modelling is discussed. We provide an answer to a long-standing question: remote sensing techniques based on observing current-induced shifts in the wave dispersion will measure the Lagrangian, not the Eulerian, mean current.more » « less
-
We investigate the effect of constant-vorticity background shear on the properties of wavetrains in deep water. Using the methodology of Fokas ( A Unified Approach to Boundary Value Problems , 2008, SIAM), we derive a higher-order nonlinear Schrödinger equation in the presence of shear and surface tension. We show that the presence of shear induces a strong coupling between the carrier wave and the mean-surface displacement. The effects of the background shear on the modulational instability of plane waves is also studied, where it is shown that shear can suppress instability, although not for all carrier wavelengths in the presence of surface tension. These results expand upon the findings of Thomas et al. ( Phys. Fluids , vol. 24 (12), 2012, 127102). Using a modification of the generalized Lagrangian mean theory in Andrews & McIntyre ( J. Fluid Mech. , vol. 89, 1978, pp. 609–646) and approximate formulas for the velocity field in the fluid column, explicit, asymptotic approximations for the Lagrangian and Stokes drift velocities are obtained for plane-wave and Jacobi elliptic function solutions of the nonlinear Schrödinger equation. Numerical approximations to particle trajectories for these solutions are found and the Lagrangian and Stokes drift velocities corresponding to these numerical solutions corroborate the theoretical results. We show that background currents have significant effects on the mean transport properties of waves. In particular, certain combinations of background shear and carrier wave frequency lead to the disappearance of mean-surface mass transport. These results provide a possible explanation for the measurements reported in Smith ( J. Phys. Oceanogr. , vol. 36, 2006, pp. 1381–1402). Our results also provide further evidence of the viability of the modification of the Stokes drift velocity beyond the standard monochromatic approximation, such as recently proposed in Breivik et al. ( J. Phys. Oceanogr. , vol. 44, 2014, pp. 2433–2445) in order to obtain a closer match to a range of complex ocean wave spectra.more » « less
-
null (Ed.)In the presence of inertia-gravity waves, the geostrophic and hydrostatic balance that characterises the slow dynamics of rapidly rotating, strongly stratified flows holds in a time-averaged sense and applies to the Lagrangian-mean velocity and buoyancy. We give an elementary derivation of this wave-averaged balance and illustrate its accuracy in numerical solutions of the three-dimensional Boussinesq equations, using a simple configuration in which vertically planar near-inertial waves interact with a barotropic anticylonic vortex. We further use the conservation of the wave-averaged potential vorticity to predict the change in the barotropic vortex induced by the waves.more » « less
-
Particulate matter in the environment, such as sediment, marine debris and plankton, is transported by surface waves. The transport of these inertial particles is different from that of fluid parcels described by Stokes drift. In this study, we consider the transport of negatively buoyant particles that settle in flow induced by surface waves as described by linear wave theory in arbitrary depth. We consider particles that fall under both a linear drag regime in the low Reynolds number limit and in a nonlinear drag regime in the transitional Reynolds number range. Based on an analysis of typical applications, we find that the nonlinear regime is the most widely applicable. From an expansion in the particle Stokes number, we find kinematic expressions for inertial particle motion in waves, and from a multiscale expansion in the dimensionless wave amplitude, we find expressions for the wave-averaged drift velocities. These drift velocities are analogous to Stokes drift and can be used in large-scale models that do not resolve surface waves. We find that the horizontal drift velocity is reduced relative to the Stokes drift of fluid parcels and that the vertical drift velocity is enhanced relative to the particle terminal settling velocity. We also demonstrate that a cloud of settling particles released simultaneously will disperse in the horizontal direction. Finally, we discuss the accuracy of our expressions by comparing against numerical simulations, which show excellent agreement, and against experimental data, which show the same trends.more » « less