Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Phase Change Memory (PCM) is an attractive candidate for main memory, as it offers non-volatility and zero leakage power while providing higher cell densities, longer data retention time, and higher capacity scaling compared to DRAM. In PCM, data is stored in the crystalline or amorphous state of the phase change material. The typical electrically controlled PCM (EPCM), however, suffers from longer write latency and higher write energy compared to DRAM and limited multi-level cell (MLC) capacities. These challenges limit the performance of data-intensive applications running on computing systems with EPCMs. Recently, researchers demonstrated optically controlled PCM (OPCM) cells with support for 5bits/cellin contrast to 2bits/cellin EPCM. These OPCM cells can be accessed directly with optical signals that are multiplexed in high-bandwidth-density silicon-photonic links. The higher MLC capacity in OPCM and the direct cell access using optical signals enable an increased read/write throughput and lower energy per access than EPCM. However, due to the direct cell access using optical signals, OPCM systems cannot be designed using conventional memory architecture. We need a complete redesign of the memory architecture that is tailored to the properties of OPCM technology. This article presents the design of a unified network and main memory system called COSMOS that combines OPCM and silicon-photonic links to achieve high memory throughput. COSMOS is composed of a hierarchical multi-banked OPCM array with novel read and write access protocols. COSMOS uses an Electrical-Optical-Electrical (E-O-E) control unit to map standard DRAM read/write commands (sent in electrical domain) from the memory controller on to optical signals that access the OPCM cells. Our evaluation of a 2.5D-integrated system containing a processor and COSMOS demonstrates2.14 ×average speedup across graph and HPC workloads compared to an EPCM system. COSMOS consumes3.8×lower read energy-per-bit and5.97×lower write energy-per-bit compared to EPCM. COSMOS is the first non-volatile memory that provides comparable performance and energy consumption as DDR5 in addition to increased bit density, higher area efficiency, and improved scalability.more » « less
-
Photonic Network-on-Chips (PNoCs) offer promising benefits over Electrical Network-on-Chips (ENoCs) in many-core systems owing to their lower latencies, higher bandwidth, and lower energy-per-bit communication with negligible data-dependent power. These benefits, however, are limited by a number of challenges. Microring resonators (MRRs) that are used for photonic communication have high sensitivity to process variations and on-chip thermal variations, giving rise to possible resonant wavelength mismatches. State-of-the-art microheaters, which are used to tune the resonant wavelength of MRRs, have poor efficiency resulting in high thermal tuning power. In addition, laser power and high static power consumption of drivers, serializers, comparators, and arbitration logic partially negate the benefits of the sub-pJ operating regime that can be obtained with PNoCs. To reduce PNoC power consumption, this paper introduces WAVES, a wavelength selection technique to identify and activate the minimum number of laser wavelengths needed, depending on an application's bandwidth requirement. Our results on a simulated 2.5D manycore system with PNoC demonstrate an average of 23% (resp. 38%) reduction in PNoC power with only <;1% (resp. <;5%) loss in system performance.more » « less
An official website of the United States government
