skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Vohra, Yogesh K"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We report on a novel TaNbZrHfTi-based high entropy alloy (HEA) which demonstrates distinctive dual-phase superconductivity. The HEA was synthesized under high pressures and high temperatures starting from a ball milled mixture of elemental metals in a large-volume Paris–Edinburgh cell with P ≈ 6 GPa and T = 2300 K. The synthesized HEA is a phase mixture of BCC (NbTa)0.45(ZrHfTi)0.55 with Tc1 = 6 K and FCC (NbTa)0.04(ZrHfTi)0.96 with Tc2 = 3.75 K. The measured magnetic field parameters for the HEA are lower critical field, Hc1(0) = 31 mT, and a relatively high upper critical field, Hc2(0) = 4.92 T. This dual-phase system is further characterized by the presence of a second magnetization peak, or the fishtail effect, observed in the virgin magnetization curves. This phenomenon, which does not distort the field-dependent magnetization hysteresis loops, suggests intricate pinning mechanisms that could be potentially tuned for optimized performance. The manifestation of these unique features in HEA superconductivity reinforces phase-dependent superconductivity and opens new avenues in the exploration of novel superconducting materials.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Free, publicly-accessible full text available August 13, 2025
  3. We have studied magnetic ordering in polycrystalline erbium at high pressures up to 32 GPa and low temperatures down to 10 K using neutron diffraction techniques at the Spallation Neutron Source at Oak Ridge National Laboratory, USA. For the hexagonal close-packed (hcp) phase, strong nuclear and magnetic satellite intensities permit a simultaneous refinement of the nuclear and magnetic structures. At 1 GPa of applied pressure, a modulation vector q=γc^* with γ≈2/7 for the c-axis modulated and cycloidal phases is consistent with prior single-crystal studies at low pressures. At 6.7 GPa in the hcp phase, we find γ≈0.31, indicating a reduction in the period of the magnetic structure with respect to the crystal lattice. The magnetic ordering temperature at 6.7 GPa is slightly above 60 K. At 32 GPa in the double hexagonal close-packed phase, the magnetic scattering constrains the magnetic ordering temperature to 25±5 K. Our neutron diffraction study demonstrates that the magnetic ordering persists in the high-pressure double hexagonal close-packed phase of erbium to the highest pressure of 32 GPa. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  4. A boron-rich boron–carbide material (B4+δC) was synthesized by spark plasma sintering of a ball-milled mixture of high-purity boron powder and graphitic carbon at a pressure of 7 MPa and a temperature of 1930 °C. This high-pressure, high-temperature synthesized material was recovered and characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, Vickers hardness measurements, and thermal oxidation studies. The X-ray diffraction studies revealed a single-phase rhombohedral structure (space group R-3m) with lattice parameters in hexagonal representation as a = 5.609 ± 0.007 Å and c = 12.082 ± 0.02 Å. The experimental lattice parameters result in a value of δ = 0.55, or the composition of the synthesized compound as B4.55C. The high-resolution scans of boron binding energy reveal the existence of a B-C bond at 188.5 eV. Raman spectroscopy reveals the existence of a 386 cm−1 vibrational mode representative of C-B-B linear chain formation due to excess boron in the lattice. The measured Vickers microhardness at a load of 200 gf shows a high hardness value of 33.8 ± 2.3 GPa. Thermal gravimetric studies on B4.55C were conducted at a temperature of 1300 °C in a compressed dry air environment, and its behavior is compared to other high-temperature ceramic materials such as high-entropy transition metal boride. The high neutron absorption cross section, high melting point, high mechanical strength, and thermal oxidation resistance make this material ideal for applications in extreme environments.

     
    more » « less
  5. Transition-metal and rare-earth borides are of considerable interest due to their electronic, mechanical, and magnetic properties as well as their structural stability under extreme conditions. Here, we report on a series of high-pressure Raman and x-ray diffraction experiments on the cubic rare-earth hexaboride EuB6 to an ultrahigh pressure of 187 GPa in a diamond anvil cell. In EuB6, divalent europium ions occupy the corners of the cubic structure, which encloses a rigid boron-bonded cage. So far, no structural phase transitions have been reported, while the nanoindentation studies indicate amorphization in nanoscale shear bands during plastic deformation. Our x-ray diffraction studies have revealed that the ambient cubic phase of EuB6 shows broadening and splitting of diffraction peaks starting at 72 GPa and the broadening continuing to 187 GPa. The high-pressure phase is recovered on decompression, and the Raman spectroscopy of the recovered sample from 187 GPa shows a downward frequency shift and broadening of T2g, Eg, and A1g modes of boron octahedron. The density functional theory simulations of EuB6 at 100 GPa have identified five possible lowest energy crystal structures. The experimental x-ray diffraction data at high pressures is compared with the theoretical predictions and the role of structural distortions induced by shear stresses is also discussed.

     
    more » « less
    Free, publicly-accessible full text available October 7, 2024
  6. CsYbSe2 has an ideal triangular-lattice geometry with pronounced two-dimensionality, pseudospin-1/2 nature, and the absence of structural disorder. These excellent characteristics favor a quantum spin-liquid realization in this material. In this work, we applied quasihydrostatic compression methods to explore the structural behaviors. Our study reveals that CsYbSe2 undergoes a structural transition around 24 GPa, accompanied by a large volume collapse of ΔV /V0∼13%. The ambient hexagonal structure with the space group P63/mmcis lowered to the tetragonal structure (P4/mmm) under high pressure. Meanwhile, the color of CsYbSe2 changes gradually from red to black before the transition. Dramatic pressure-induced changes are clarified by the electronic structure calculations from the first principles, which indicate that the initial insulating ground state turns metallic in a squeezed lattice. These findings highlight Yb-based dichalcogenide delafossites as an intriguing material to probe novel quantum effects under high pressure. 
    more » « less
    Free, publicly-accessible full text available November 21, 2024
  7. Metal oxide thermal reduction, enabled by microwave-induced plasma, was used to synthesize high entropy borides (HEBs). This approach capitalized on the ability of a microwave (MW) plasma source to efficiently transfer thermal energy to drive chemical reactions in an argon-rich plasma. A predominantly single-phase hexagonal AlB2-type structural characteristic of HEBs was obtained by boro/carbothermal reduction as well as by borothermal reduction. We compare the microstructural, mechanical, and oxidation resistance properties using the two different thermal reduction approaches (i.e., with and without carbon as a reducing agent). The plasma-annealed HEB (Hf0.2, Zr0.2, Ti0.2, Ta0.2, Mo0.2)B2 made via boro/carbothermal reduction resulted in a higher measured hardness (38 ± 4 GPa) compared to the same HEB made via borothermal reduction (28 ± 3 GPa). These hardness values were consistent with the theoretical value of ~33 GPa obtained by first-principles simulations using special quasi-random structures. Sample cross-sections were evaluated to examine the effects of the plasma on structural, compositional, and mechanical homogeneity throughout the HEB thickness. MW-plasma-produced HEBs synthesized with carbon exhibit a reduced porosity, higher density, and higher average hardness when compared to HEBs made without carbon. 
    more » « less
  8. The compression behavior of the hexagonal AlB2 phase of Hafnium Diboride (HfB2) was studied in a diamond anvil cell to a pressure of 208 GPa by axial X-ray diffraction employing platinum as an internal pressure standard. The deformation behavior of HfB2 was studied by radial X-ray diffraction technique to 50 GPa, which allows for measurement of maximum differential stress or compressive yield strength at high pressures. The hydrostatic compression curve deduced from radial X-ray diffraction measurements yielded an ambient-pressure volume V0 = 29.73 Å3/atom and a bulk modulus K0 = 282 GPa. Density functional theory calculations showed ambient-pressure volume V0 = 29.84 Å3/atom and bulk modulus K0 = 262 GPa, which are in good agreement with the hydrostatic experimental values. The measured compressive yield strength approaches 3% of the shear modulus at a pressure of 50 GPa. The theoretical strain-stress calculation shows a maximum shear stress τmax~39 GPa along the (1−10) [110] direction of the hexagonal lattice of HfB2, which thereby can be an incompressible high strength material for extreme-environment applications. 
    more » « less
  9. Abstract High pressure is an effective tool to induce exotic quantum phenomena in magnetic topological insulators by controlling the interplay of magnetic order and topological state. This work presents a comprehensive high-pressure study of the crystal structure and magnetic ground state up to 62 GPa in an intrinsic topological magnet EuSn 2 P 2 . With a combination of high resolution X-ray diffraction, 151 Eu synchrotron Mössbauer spectroscopy, X-ray absorption spectroscopy, molecular orbital calculations, and electronic band structure calculations, it has been revealed that pressure drives EuSn 2 P 2 from a rhombohedral crystal to an amorphous phase at 36 GPa accompanied by a fourfold enhancement of magnetic ordering temperature. In the pressure-induced amorphous phase, Eu ions take an intermediate valence state. The drastic enhancement of magnetic ordering temperature from 30 K at ambient pressure to 130 K at 41.2 GPa resulting from Ruderman–Kittel–Kasuya–Yosida (RKKY) interactions likely attributes to the stronger Eu–Sn interaction at high pressure. These rich results demonstrate that EuSn 2 P 2 is an ideal platform to study the correlation of the enhanced RKKY interactions, disordered lattice, intermediate valence, and topological state. 
    more » « less