skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Pressure-induced crystal structural and insulator-metal transitions in the quantum spin liquid candidate CsYbSe2
CsYbSe2 has an ideal triangular-lattice geometry with pronounced two-dimensionality, pseudospin-1/2 nature, and the absence of structural disorder. These excellent characteristics favor a quantum spin-liquid realization in this material. In this work, we applied quasihydrostatic compression methods to explore the structural behaviors. Our study reveals that CsYbSe2 undergoes a structural transition around 24 GPa, accompanied by a large volume collapse of ΔV /V0∼13%. The ambient hexagonal structure with the space group P63/mmcis lowered to the tetragonal structure (P4/mmm) under high pressure. Meanwhile, the color of CsYbSe2 changes gradually from red to black before the transition. Dramatic pressure-induced changes are clarified by the electronic structure calculations from the first principles, which indicate that the initial insulating ground state turns metallic in a squeezed lattice. These findings highlight Yb-based dichalcogenide delafossites as an intriguing material to probe novel quantum effects under high pressure.  more » « less
Award ID(s):
2045760 2124934
PAR ID:
10475164
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review B
Volume:
108
Issue:
17
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present the combined results of single crystal X-ray diffraction, physical properties characterization, and theoretical assessment of EuSnP under high pressure. Single crystals of EuSnP prepared using Sn self-flux crystallize in the tetragonal NbCrN-type crystal structure (S.G. P 4/ nmm ) at ambient pressure. Previous studies have shown that for Eu ions, seven unpaired electrons impart a 2+ oxidation state. Assuming the oxidation states of Eu to be +2 and P to be −3, each Sn will donate one electron, with one p valence electron left for forming a weak Sn–Sn bond. According to the high-pressure single crystal X-ray diffraction measurements, no structural phase transition was observed up to ∼6.2 GPa. Temperature-dependent resistivity measurements up to 2.15 GPa on single crystals indicate that the phase-transition temperature occurring at the Néel temperature ( T N ) is significantly enhanced under high pressure. The robust crystallography and enhanced antiferromagnetic transition temperatures can be rationalized by the electronic structure calculations and chemical bonding analysis. The increasing Eu–P bonding interaction is consistent with the lattice parameter changing and enhanced T N . Moreover, the molecular orbital diagram shows that the weak Sn–Sn bond can be squeezed under pressure, acting as a compression buffer to stabilize the structure. 
    more » « less
  2. The tin-selenide and tin-sulfide classes of materials undergo multiple structural transitions under high pressure leading to periodic lattice distortions, superconductivity, and topologically non-trivial phases, yet a number of controversies exist regarding the structural transformations in these systems. We perform first-principles calculations within the framework of density functional theory and a careful comparison of our results with available experiments on SnSe 2 reveals that the apparent contradictions among high-pressure results can be attributed to differences in experimental conditions. We further demonstrate that under hydrostatic pressure a superstructure can be stabilized above 20 GPa in SnS 2 via a periodic lattice distortion as found recently in the case of SnSe 2 , and that this pressure-induced phase transition is due to the combined effect of Fermi surface nesting and electron–phonon coupling at a momentum wave vector q = (1/3, 1/3, 0). In addition, we investigate the contribution of nonadiabatic corrections on the calculated phonon frequencies, and show that the quantitative agreement between theory and experiment for the high-energy A 1g phonon mode is improved when these effects are taken into account. Finally, we examine the nature of the superconducting state recently observed in SnSe 2 under nonhydrostatic pressure and predict the emergence of superconductivity with a comparable critical temperature in SnS 2 under similar experimental conditions. Interestingly, in the periodic lattice distorted phases, the critical temperature is found to be reduced by an order of magnitude due to the restructuring of the Fermi surface. 
    more » « less
  3. Kancharla, S (Ed.)
    We present the magnetic and structural properties of [Cu(pyrazine)0.5(glycine)]ClO4 under applied pressure. As previously reported, at ambient pressure this material consists of quasi-two-dimensional layers of weakly coupled antiferromagnetic dimers which undergo Bose-Einstein condensation of triplet excitations between two magnetic field-induced quantum critical points (QCPs). The molecular building blocks from which the compound is constructed give rise to exchange strengths that are considerably lower than those found in other S = 1/2 dimer materials, which allows us to determine the pressure evolution of the entire field-temperature magnetic phase diagram using radio-frequency magnetometry. We find that a distinct phase emerges above the upper field-induced transition at elevated pressures and also show that an additional QCP is induced at zero field at a critical pressure of pc = 15.7(5) kbar. Pressure-dependent single-crystal x-ray diffraction and density functional theory calculations indicate that this QCP arises primarily from a dimensional crossover driven by an increase in the interdimer interactions between the planes. While the effect of quantum fluctuations on the lower field-induced transition is enhanced with applied pressure, quantum Monte Carlo calculations suggest that this alone cannot explain an unconventional asymmetry that develops in the phase diagram. 
    more » « less
  4. This study explores the electronic and structural properties of the kagome metal CsV3Sb5 under uniaxial pressures up to 20 GPa, utilizing first-principles calculations based on experimental crystallographic data provided by Tsirlin et al., SciPost Phys. 12, 049 (2022). At ambient pressure, the electronic band structure exhibits multiple Dirac points, van Hove singularities (VHSs), and flat bands near the Fermi level, which progressively shift closer to the Fermi level with increasing pressure. Remarkably, two additional Dirac-like crossings emerge above 4.9 GPa, moving ∼25 meV below the Fermi level at 20 GPa. Concurrently, the VHS crosses the Fermi level as pressure increases to 9.8 GPa, highlighting a dynamic evolution of the electronic structure under high pressure conditions. The Fermi surface evolution under pressure reveals quasi-2D pockets, including a deformed cylindrical pocket centered at the Γ-point and a hexagonal pocket at the Brillouin zone boundary. Notably, the cylindrical pocket splits into two semi-spherical pockets above 4.9 GPa. Phonon calculations indicate lattice dynamical instability at ambient pressure, as evidenced by negative phonon frequencies, but stabilization occurs above 4.9 GPa, where all phonon modes become positive. These findings provide crucial insights into the pressure-induced modifications in the electronic and structural properties of CsV3Sb5, advancing the understanding of kagome-based quantum materials and their emergent phenomena. 
    more » « less
  5. In this study, phase transitions (structural and magnetic) and associated magnetocaloric properties of stoichiometric MnCoGe have been investigated as a function of annealing pressure. Metastable phases were generated by annealing at 800 °C followed by rapid cooling under pressures up to 6.0 GPa. The x-ray diffraction results reveal that the crystal cell volume of the metastable phases continuously decreases with increasing thermal processing pressure, leading to a decrease in the structural transition temperature. The magnetic and structural transitions merge and form a first-order magnetostructural transition between the ferromagnetic orthorhombic and paramagnetic hexagonal phases over a broad temperature range (>80 K) spanning room temperature, yielding considerable magnetic entropy changes. These findings demonstrate the utility of thermal processing under high pressure, i.e., high-pressure annealing, to control the magnetostructural transitions and associated magnetocaloric properties of MnCoGe without altering its chemical composition. 
    more » « less