skip to main content

Search for: All records

Creators/Authors contains: "Volkamer, Rainer"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2023
  2. Iodine is an atmospheric trace element emitted from oceans that efficiently destroys ozone (O 3 ). Low O 3 in airborne dust layers is frequently observed but poorly understood. We show that dust is a source of gas-phase iodine, indicated by aircraft observations of iodine monoxide (IO) radicals inside lofted dust layers from the Atacama and Sechura Deserts that are up to a factor of 10 enhanced over background. Gas-phase iodine photochemistry, commensurate with observed IO, is needed to explain the low O 3 inside these dust layers (below 15 ppbv; up to 75% depleted). The added dust iodine can explain decreases in O 3 of 8% regionally and affects surface air quality. Our data suggest that iodate reduction to form volatile iodine species is a missing process in the geochemical iodine cycle and presents an unrecognized aeolian source of iodine. Atmospheric iodine has tripled since 1950 and affects ozone layer recovery and particle formation.
  3. Abstract. This study presents a characterization of the hygroscopic growth behaviour and effects of different inorganic seed particles on the formation of secondary organic aerosols (SOAs) from the dark ozone-initiated oxidation of isoprene at low NOx conditions. We performed simulations of isoprene oxidation using a gas-phase chemical reaction mechanism based onthe Master Chemical Mechanism (MCM) in combination with an equilibriumgas–particle partitioning model to predict the SOA concentration. Theequilibrium model accounts for non-ideal mixing in liquid phases, includingliquid–liquid phase separation (LLPS), and is based on the AIOMFAC (Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients) model for mixture non-ideality and the EVAPORATION (Estimation of VApour Pressure of ORganics, Accounting for Temperature,Intramolecular, and Non-additivity effects) model for pure compound vapourpressures. Measurements from the Cosmics Leaving Outdoor Droplets (CLOUD)chamber experiments, conducted at the European Organization for NuclearResearch (CERN) for isoprene ozonolysis cases, were used to aid inparameterizing the SOA yields at different atmospherically relevanttemperatures, relative humidity (RH), and reacted isoprene concentrations. To represent the isoprene-ozonolysis-derived SOA, a selection of organicsurrogate species is introduced in the coupled modelling system. The modelpredicts a single, homogeneously mixed particle phase at all relativehumidity levels for SOA formation in the absence of any inorganic seedparticles. In the presence ofmore »aqueous sulfuric acid or ammonium bisulfateseed particles, the model predicts LLPS to occur below ∼ 80 % RH, where the particles consist of an inorganic-rich liquid phase andan organic-rich liquid phase; however, this includes significant amounts of bisulfate and water partitioned to the organic-rich phase. The measurements show an enhancement in the SOA amounts at 85 % RH, compared to 35 % RH, for both the seed-free and seeded cases. The model predictions of RH-dependent SOA yield enhancements at 85 % RH vs. 35 % RH are 1.80 for a seed-free case, 1.52 for the case with ammonium bisulfate seed, and 1.06 for the case with sulfuric acid seed. Predicted SOA yields are enhanced in the presence of an aqueous inorganic seed, regardless of the seed type (ammonium sulfate, ammonium bisulfate, or sulfuric acid) in comparison with seed-free conditions at the same RH level. We discuss the comparison of model-predicted SOA yields with a selection of other laboratory studies on isoprene SOA formation conducted at different temperatures and for a variety of reacted isoprene concentrations. Those studies were conducted at RH levels at or below 40 % with reported SOA mass yields ranging from 0.3 % up to 9.0 %, indicating considerable variations. A robust feature of our associated gas–particle partitioning calculations covering the whole RH range is the predicted enhancement of SOA yield at high RH (> 80 %) compared to low RH (dry) conditions, which is explained by the effect of particle water uptake and its impact on the equilibrium partitioning of all components.« less
  4. Abstract Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O 3 surface concentrations. Although iodic acid (HIO 3 ) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO 3 via reactions (R1) IOIO + O 3  → IOIO 4 and (R2) IOIO 4  + H 2 O → HIO 3  + HOI +  (1) O 2 . The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO 3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.
    Free, publicly-accessible full text available November 14, 2023
  5. Abstract. Glyoxal (CHOCHO), the simplest dicarbonyl in thetroposphere, is a potential precursor for secondary organic aerosol (SOA)and brown carbon (BrC) affecting air quality and climate. The airbornemeasurement of CHOCHO concentrations during the KORUS-AQ (KORea–US AirQuality study) campaign in 2016 enables detailed quantification of lossmechanisms pertaining to SOA formation in the real atmosphere. Theproduction of this molecule was mainly from oxidation of aromatics (59 %)initiated by hydroxyl radical (OH). CHOCHO loss to aerosol was found to bethe most important removal path (69 %) and contributed to roughly∼ 20 % (3.7 µg sm−3 ppmv−1 h−1,normalized with excess CO) of SOA growth in the first 6 h in SeoulMetropolitan Area. A reactive uptake coefficient (γ) of∼ 0.008 best represents the loss of CHOCHO by surface uptakeduring the campaign. To our knowledge, we show the first field observationof aerosol surface-area-dependent (Asurf) CHOCHO uptake, which divergesfrom the simple surface uptake assumption as Asurf increases in ambientcondition. Specifically, under the low (high) aerosol loading, the CHOCHOeffective uptake rate coefficient, keff,uptake, linearly increases(levels off) with Asurf; thus, the irreversible surface uptake is areasonable (unreasonable) approximation for simulating CHOCHO loss toaerosol. Dependence on photochemical impact and changes in the chemical andphysical aerosol properties “free water”, as well as aerosol viscosity,are discussed as other possible factors influencing CHOCHO uptakemore »rate. Ourinferred Henry's law coefficient of CHOCHO, 7.0×108 M atm−1, is ∼ 2 orders of magnitude higher than thoseestimated from salting-in effects constrained by inorganic salts onlyconsistent with laboratory findings that show similar high partitioning intowater-soluble organics, which urges more understanding on CHOCHO solubilityunder real atmospheric conditions.« less
  6. Abstract

    The western U.S. wildfire smoke plumes observed by the upward-pointing Wyoming Cloud Lidar (WCL) during the Biomass Burning Fluxes of Trace Gases and Aerosols (BB-FLUX) project are investigated in a two-part paper. Part II here presents the reconstructed vertical structures of seven plumes from airborne WCL measurements. The vertical structures evident in the fire plume cross sections, supported by in situ measurements, showed that the fire plumes had distinct macrophysical and microphysical properties, which are closely related to the plume transport, fire emission intensity, and thermodynamic structure in the boundary layer. All plumes had an injection layer between 2.8 and 4.0 km above mean sea level, which is generally below the identified boundary layer top height. Plumes that transported upward out of the boundary layer, such as the Rabbit Foot and Pole Creek fires, formed a higher plume at around 5.5 km. The largest and highest Pole Creek fire plume was transported farthest and was sampled by University of Wyoming King Air aircraft at 170 km, or 2.3 h, downwind. It was associated with the warmest, driest, deepest boundary layer and the highest wind speed and turbulence. The Watson Creek fire plume intensified in the afternoon with stronger COmore »emission and larger smoke plume height than in the morning, indicating a fire diurnal cycle, but some fire plumes did not intensify in the afternoon. There were pockets of relatively large irregular aerosol particles at the tops of plumes from active fires. In less-active fire plumes, the WCL depolarization ratio and passive cavity aerosol spectrometer probe mass mean diameter maximized at a height that was low in the plume.

    « less
  7. Abstract. In this paper, we present a new version of the chemistry–climate model SOCOL-AERv2 supplemented by an iodine chemistry module. We perform three 20-year ensemble experiments to assess the validity of the modeled iodine and to quantify the effects of iodine on ozone. The iodine distributions obtained with SOCOL-AERv2-I agree well with AMAX-DOAS observations and with CAM-chem model simulations. For the present-day atmosphere, the model suggests that the iodine-induced chemistry leads to a 3 %–4 % reduction in the ozone column, which is greatest at high latitudes. The model indicates the strongest influence of iodine in the lower stratosphere with 30 ppbv less ozone at low latitudes and up to 100 ppbv less at high latitudes. In the troposphere, the account of the iodine chemistry reduces the tropospheric ozone concentration by 5 %–10 % depending on geographical location. In the lower troposphere, 75 % of the modeled ozone reduction originates from inorganic sources of iodine, 25 % from organic sources of iodine. At 50 hPa, the results show that the impacts of iodine from both sources are comparable. Finally, we determine the sensitivity of ozone to iodine by applying a 2-fold increase in iodine emissions, as it might be representative for iodine by the end of this century. Thismore »reduces the ozone column globally by an additional 1.5 %–2.5 %. Our results demonstrate the sensitivity of atmospheric ozone to iodine chemistry for present and future conditions, but uncertainties remain high due to the paucity of observational data of iodine species.« less
  8. Intense new particle formation events are regularly observed under highly polluted conditions, despite the high loss rates of nucleated clusters. Higher than expected cluster survival probability implies either ineffective scavenging by pre-existing particles or missing growth mechanisms. Here we present experiments performed in the CLOUD chamber at CERN showing particle formation from a mixture of anthropogenic vapours, under condensation sinks typical of haze conditions, up to 0.1 s −1 . We find that new particle formation rates substantially decrease at higher concentrations of pre-existing particles, demonstrating experimentally for the first time that molecular clusters are efficiently scavenged by larger sized particles. Additionally, we demonstrate that in the presence of supersaturated gas-phase nitric acid (HNO 3 ) and ammonia (NH 3 ), freshly nucleated particles can grow extremely rapidly, maintaining a high particle number concentration, even in the presence of a high condensation sink. Such high growth rates may explain the high survival probability of freshly formed particles under haze conditions. We identify under what typical urban conditions HNO 3 and NH 3 can be expected to contribute to particle survival during haze.
    Free, publicly-accessible full text available May 19, 2023
  9. Abstract. Iodine species are important in the marine atmosphere foroxidation and new-particle formation. Understanding iodine chemistry andiodine new-particle formation requires high time resolution, highsensitivity, and simultaneous measurements of many iodine species. Here, wedescribe the application of a bromide chemical ionization mass spectrometer(Br-CIMS) to this task. During the iodine oxidation experiments in theCosmics Leaving OUtdoor Droplets (CLOUD) chamber, we have measured gas-phaseiodine species and sulfuric acid using two Br-CIMS, one coupled to aMulti-scheme chemical IONization inlet (Br-MION-CIMS) and the other to aFilter Inlet for Gasses and AEROsols inlet (Br-FIGAERO-CIMS). From offlinecalibrations and intercomparisons with other instruments, we havequantified the sensitivities of the Br-MION-CIMS to HOI, I2, andH2SO4 and obtained detection limits of 5.8 × 106,3.8 × 105, and 2.0 × 105 molec. cm−3,respectively, for a 2 min integration time. From binding energycalculations, we estimate the detection limit for HIO3 to be1.2 × 105 molec. cm−3, based on an assumption of maximumsensitivity. Detection limits in the Br-FIGAERO-CIMS are around 1 order ofmagnitude higher than those in the Br-MION-CIMS; for example, the detectionlimits for HOI and HIO3 are 3.3 × 107 and 5.1 × 106 molec. cm−3, respectively. Our comparisons of the performanceof the MION inlet and the FIGAERO inlet show that bromide chemicalionization mass spectrometers using either atmospheric pressure or reducedpressure interfaces are well-matched to measuring iodine species andsulfuric acid in marinemore »environments.« less
  10. Abstract. We present an updated mechanism for tropospheric halogen (Cl + Br + I) chemistry in the GEOS-Chem global atmospheric chemical transportmodel and apply it to investigate halogen radical cycling and implications for tropospheric oxidants. Improved representation of HOBr heterogeneouschemistry and its pH dependence in our simulation leads to less efficient recycling and mobilization of bromine radicals and enables the model toinclude mechanistic sea salt aerosol debromination without generating excessive BrO. The resulting global mean tropospheric BrO mixingratio is 0.19 ppt (parts per trillion), lower than previous versions of GEOS-Chem. Model BrO shows variable consistency and biases in comparison tosurface and aircraft observations in marine air, which are often near or below the detection limit. The model underestimates the daytimemeasurements of Cl2 and BrCl from the ATom aircraft campaign over the Pacific and Atlantic, which if correct would imply a very largemissing primary source of chlorine radicals. Model IO is highest in the marine boundary layer and uniform in the free troposphere, with a globalmean tropospheric mixing ratio of 0.08 ppt, and shows consistency with surface and aircraft observations. The modeled global meantropospheric concentration of Cl atoms is 630 cm−3, contributing 0.8 % of the global oxidation of methane, 14 % of ethane,8 % of propane, and 7 % of highermore »alkanes. Halogen chemistry decreases the global tropospheric burden of ozone by 11 %,NOx by 6 %, and OH by 4 %. Most of the ozone decrease is driven by iodine-catalyzed loss. The resulting GEOS-Chem ozonesimulation is unbiased in the Southern Hemisphere but too low in the Northern Hemisphere.« less