skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vuran, Mehmet"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available December 12, 2026
  2. Free, publicly-accessible full text available November 15, 2026
  3. Millimeter-wave (mmWave) spectrum offers wide bandwidth resources that are promising to realize high- throughput wireless communications in agricultural fields. Due to the relatively small wavelength at this frequency band, mmWave signals tend to be scattered when the wireless link is established above the crop canopy. However, little is known about the scattering effect caused by crop canopy at mmWave. In this work, the scattering loss in the mmWave spectrum is quantified for different crop canopy states that are represented by the leaf area index. In particular, an approach based on a Rayleigh roughness criterion is utilized, coupled with canopy height statistics, to calculate the scattering loss. The results of the model agree well with empirical data collected from agricultural field experiments conducted in Summer 2021. The results demonstrate that as the leaf area index decreases with crop maturity, the scattering loss also decreases. This is the first work that illustrates the feasibility of using the mmWave communication links to perform sensing on the leaf area index, which is a critical metric in estimating crop conditions. 
    more » « less
  4. Wireless networks in agricultural environments are unique in many ways. Recent measurements reveal that the dynamics of crop growth impact wireless propagation channels with a long-term seasonal pattern. Additionally, short-term environmental factors, such as strong wind, result in variations in channel statistics. Next-generation agricultural fields, populated by autonomous tractors, drones, and high-throughput sensing systems, require high-throughput connectivity infrastructure, resulting in the future deployment of high-frequency networks, where they have not been deployed before. More specifically, when millimeter-wave (mmWave) communication systems, a viable candidate for 5G and 6G high-throughput solutions, are deployed for higher throughput, these issues become more prominent due to the relatively small wavelength at this frequency band. To improve coverage in the mmWave spectrum in agricultural settings, reconfigurable intelligent surfaces (RISs) are a promising solution with low energy consumption and high cost efficiency when compared to half-duplex active relays with multiple antennas. To ensure link resiliency under dynamic channel behavior, an adaptive RIS for broadband wireless agricultural networks (AgRIS) at mmWave band is designed in this work. AgRIS relies on output from a time-series model that forecasts the short-term wind speed based on measured wind data, which is readily available in most farms. The temporal correlation between link reliability and wind speed is demonstrated through extensive field experiments. Our simulation results demonstrate that AgRIS with a small footprint of 11 × 11 elements can help mitigate the adversarial effects of wind-induced signal level drop by up to 8 dB and provides high energy efficiency of 1 Gbits/joule. 
    more » « less
  5. Climate change resulting from releasing greenhouse gases into the atmosphere continues to affect the Earth’s ecosystem. This pressing issue is driving the development of novel technologies to sense and measure harmful gas emissions. In parallel, the evolution of wireless communication networks requires the wider deployment of mobile telecommunication infrastructure. The terahertz (THz) spectrum is currently under-utilized but is expected to feature in 6G. The use of this spectrum is explored simultaneously for ultra-broadband communication and atmospheric sensing. For atmospheric sensing, the absorption of THz signals by gas molecules is used to estimate atmospheric gas composition. Molecular absorption loss profiles for each gas isotopologue are taken from the HITRAN database and compared with data from transceivers in sensing mode. Preliminary results are presented, showing the effects of signal path loss and power spectral density. A 6G network architecture is proposed to indicate how 6G infrastructure can perform climate change sensing, in addition to its primary purpose of wireless communication. 
    more » « less
  6. Reliable Terahertz (THz) links are necessary for outdoor point-to-point communication with the exponential growth of wireless data traffic. This study presents a modified Monte Carlo simulation procedure for estimating THz link attenuation due to multiple scattering by charged dust particles on the THz beam propagation path. Scattering models are developed for beams through dust, based on Mie and Rayleigh approximations for corresponding frequencies on Earth (0.24 THz) and Mars (0.24 & 1.64 THz). The simulation results are compared, considering parameters such as the number of Monte-Carlo photon (MCP) packets, visibility, dust particle placement density along the beam, frequency, and distance between the transmitter and the receiver. Moreover, a channel capacity model was proposed, considering THz link attenuation due to dust storms, spreading loss, and molecular absorption loss for Earth and Mars outdoor environments. Simulation results for Earth show that the link attenuation increases with dust particle placement density, distance, and frequency, and attenuation decreases with visibility and MCP packets. On Mars, similar results are obtained for both frequencies, except that the attenuation varies around a constant value with the frequency increase. Moreover, attenuation is slightly higher at 0.24 THz frequency compared to 1.64 THz when more dust particles are present on the beam propagation path. Channel capacity is estimated for Earth and Mars environments considering time and distance-dependent scenarios. Time windows that show a sudden drop of dust particles along the beam provide opportunities to communicate with high reliability. Moreover, increasing the distance between the transmitter and receiver severely reduces the channel capacity measurement in strong dust storm conditions in both environments. Our study has found that weak dust storms have relatively little effect on Mars but much more significant effects on Earth. 
    more » « less