Millimeter-wave (mmWave) spectrum offers wide bandwidth resources that are promising to realize high- throughput wireless communications in agricultural fields. Due to the relatively small wavelength at this frequency band, mmWave signals tend to be scattered when the wireless link is established above the crop canopy. However, little is known about the scattering effect caused by crop canopy at mmWave. In this work, the scattering loss in the mmWave spectrum is quantified for different crop canopy states that are represented by the leaf area index. In particular, an approach based on a Rayleigh roughness criterion is utilized, coupled with canopy height statistics, to calculate the scattering loss. The results of the model agree well with empirical data collected from agricultural field experiments conducted in Summer 2021. The results demonstrate that as the leaf area index decreases with crop maturity, the scattering loss also decreases. This is the first work that illustrates the feasibility of using the mmWave communication links to perform sensing on the leaf area index, which is a critical metric in estimating crop conditions.
more »
« less
AgRIS: wind-adaptive wideband reconfigurable intelligent surfaces for resilient wireless agricultural networks at millimeter-wave spectrum
Wireless networks in agricultural environments are unique in many ways. Recent measurements reveal that the dynamics of crop growth impact wireless propagation channels with a long-term seasonal pattern. Additionally, short-term environmental factors, such as strong wind, result in variations in channel statistics. Next-generation agricultural fields, populated by autonomous tractors, drones, and high-throughput sensing systems, require high-throughput connectivity infrastructure, resulting in the future deployment of high-frequency networks, where they have not been deployed before. More specifically, when millimeter-wave (mmWave) communication systems, a viable candidate for 5G and 6G high-throughput solutions, are deployed for higher throughput, these issues become more prominent due to the relatively small wavelength at this frequency band. To improve coverage in the mmWave spectrum in agricultural settings, reconfigurable intelligent surfaces (RISs) are a promising solution with low energy consumption and high cost efficiency when compared to half-duplex active relays with multiple antennas. To ensure link resiliency under dynamic channel behavior, an adaptive RIS for broadband wireless agricultural networks (AgRIS) at mmWave band is designed in this work. AgRIS relies on output from a time-series model that forecasts the short-term wind speed based on measured wind data, which is readily available in most farms. The temporal correlation between link reliability and wind speed is demonstrated through extensive field experiments. Our simulation results demonstrate that AgRIS with a small footprint of 11 × 11 elements can help mitigate the adversarial effects of wind-induced signal level drop by up to 8 dB and provides high energy efficiency of 1 Gbits/joule.
more »
« less
- PAR ID:
- 10434921
- Date Published:
- Journal Name:
- Frontiers in Communications and Networks
- Volume:
- 4
- ISSN:
- 2673-530X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Millimeter-wave (mmWave) spectrum offers wide bandwidth resources that are promising to realize high-throughput wireless communications in agricultural fields. Due to the relatively small wavelength at this frequency band, mmWave signals tend to be scattered when the wireless link is established above the crop canopy. However, little is known about the scattering effect caused by crop canopy at mmWave. In this work, the scattering loss in the mmWave spectrum is quantified for different crop canopy states that are represented by the leaf area index. In particular, an approach based on a Rayleigh roughness criterion is utilized, coupled with canopy height statistics, to calculate the scattering loss. The results of the model agree well with empirical data collected from agricultural field experiments conducted in Summer 2021. The results demonstrate that as the leaf area index decreases with crop maturity, the scattering loss also decreases. This is the first work that illustrates the feasibility of using the mmWave communication links to perform sensing on the leaf area index, which is a critical metric in estimating crop conditions.more » « less
-
mmWave communication has been recognized as a highly promising technology for 5G wireless backhaul, which is capable of providing multi-gigabit per second transmission rates. However, in urban wireless backhaul environments, unforeseen events can cause short-term blockages or node failures and, therefore, network survivability is extremely important. In this paper, we investigate a novel relay-assisted mmWave backhaul network architecture, where a number of small-cell BSs and relays are deployed, e.g. on the lampposts of urban streets. Relays are used to provide multi-hop line-of-sight paths between small-cell BSs, which form logical links of the network. In this scenario, the interconnected logical links make up a mesh network, which offers opportunities for both link-level and network-level reconfiguration. We propose two joint link-network level reconfiguration schemes for recovery after exceptional events. One prioritizes relay path (link-level) reconfiguration and uses alternate network-level paths only if necessary. The other splits traffic on both reconfigured links and backup paths to improve network throughput. Simulation results demonstrate that the proposed schemes significantly outperform purely link-level and purely network-level reconfiguration schemes. The proposed approaches are shown to not only maintain high network throughput but to also provide robust blockage/fault tolerance across a range of scenarios for urban mmWave backhaul networks.more » « less
-
The mmWave WiGig frequency band can support high throughput and low latency emerging applications. In this context, accurate prediction of channel gain enables seamless connectivity with user mobility via proactive handover and beamforming. Machine learning techniques have been widely adopted in literature for mmWave channel prediction. However, the existing techniques assume that the indoor mmWave channel follows a stationary stochastic process. This paper demonstrates that indoor WiGig mmWave channels are non-stationary where the channel’s cumulative distribution function (CDF) changes with the user’s spatio-temporal mobility. Specifically, we show significant differences in the empirical CDF of the channel gain based on the user’s mobility stage, namely, room entering, wandering, and exiting. Thus, the dynamic WiGig mmWave indoor channel suffers from concept drift that impedes the generalization ability of deep learning-based channel prediction models. Our results demonstrate that a state-of-the-art deep learning channel prediction model based on a hybrid convolutional neural network (CNN) long-short-term memory (LSTM) recurrent neural network suffers from a deterioration in the prediction accuracy by 11–68% depending on the user’s mobility stage and the model’s training. To mitigate the negative effect of concept drift and improve the generalization ability of the channel prediction model, we develop a robust deep learning model based on an ensemble strategy. Our results show that the weight average ensemble-based model maintains a stable prediction that keeps the performance deterioration below 4%.more » « less
-
Fifth-generation (5G) new radio (NR) deployments are being rolled out in both the C–band (3.3 - 5.0 GHz) and millimeter-wave (mmWave) band (24.5 - 29.5 GHz). For outdoor scenarios, the C–band is expected to provide wide area coverage and throughput uniformity, whereas the mmWave band is expected to provide ultra-high throughput to dedicated areas within the C-band coverage. Due to the differences in the frequency bands, both systems are expected to be designed with different transmit and receive parameters, naturally resulting in performance variations proportional to the chosen parameters. Unlike many previous works, this paper presents measurement evaluations in central Auckland, New Zealand, from a precommercial deployment of a single-user, single-cell 5G-NR system operating in both bands. The net throughput, coverage reliability, and channel rank are analyzed across the two bands with baseband and analog beamforming. Our results show that the C-band coverage is considerably better than mmWave, with a consistently higher channel rank. Furthermore, the spatial stationarity region (SSR) for the azimuth angles-of-departure (AODs) is characterized, and a model derived from the measured beam identities is presented. The SSR of azimuth AODs is seen to closely follow a gamma distribution.more » « less
An official website of the United States government

