Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
This study aims to detect abnormal human gait patterns through the dynamic response of floor structures during foot-floor interactions. Gait abnormality detection is critical for the early discovery and progressive tracking of musculoskeletal and neurological disorders, such as Parkinson’s and Cerebral Palsy. Especially, analyzing the foot-floor contacts during walking provides important insights into gait patterns, such as contact area, contact force, and contact time, enabling gait abnormality detection through these measurements. Existing studies use various sensing devices to capture such information, including cameras, wearables, and force plates. However, the former two lack force-related information, making it difficult to identify the causes of gait health issues, while the latter has limited coverage of the walking path. In this study, we leverage footstep-induced structural vibrations to infer foot-floor contact profiles, which allows force-informed and more wide-ranged gait abnormality detection. The main challenge lies in modeling the complex force transfer mechanism between the foot and the floor surfaces, leading to difficulty in reconstructing the force and contact profile during foot-floor interaction using structural vibrations. To overcome the challenge, we first characterize the floor vibration for each contact type (e.g., heel, midfoot, and toe contact) to understand how contact forces and areas affect the induced floor vibration. Then, we leverage the time-frequency response spectrum resulting from those contacts to develop features that are representative of each contact type. Finally, gait abnormalities are detected by comparing the predicted foot-floor contact force and motion with the healthy gait. To evaluate our approach, we conducted a real-world walking experiment with 8 subjects. Our approach achieves 91.6% and 96.7% accuracy in predicting contact type and time, respectively, leading to 91.9% accuracy in detecting various types of gait abnormalities, including asymmetry, dragging, and midfoot/toe contacts.more » « less
-
Monitoring the compliance of social distancing is critical for schools and offices to recover in-person operations in indoor spaces from the COVID-19 pandemic. Existing systems focus on vision- and wearable-based sensing approaches, which require direct line-of-sight or device-carrying and may also raise privacy concerns. To overcome these limitations, we introduce a new monitoring system for social distancing compliance based on footstep-induced floor vibration sensing. This system is device-free, non-intrusive, and perceived as more privacy-friendly. Our system leverages the insight that footsteps closer to the sensors generate vibration signals with larger amplitudes. The system first estimates the location of each person relative to the sensors based on signal energy and then infers the distance between two people. We evaluated the system through a real-world experiment with 8 people, and the system achieves an average accuracy of 97.8% for walking scenario classification and 80.4% in social distancing violation detection.more » « less
An official website of the United States government
