skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wafula, Eric"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Background

    Plants have complex and dynamic immune systems that have evolved to resist pathogens. Humans have worked to enhance these defenses in crops through breeding. However, many crops harbor only a fraction of the genetic diversity present in wild relatives. Increased utilization of diverse germplasm to search for desirable traits, such as disease resistance, is therefore a valuable step towards breeding crops that are adapted to both current and emerging threats. Here, we examine diversity of defense responses across four populations of the long-generation tree cropTheobroma cacaoL., as well as four non-cacaoTheobromaspecies, with the goal of identifying genetic elements essential for protection against the oomycete pathogenPhytophthora palmivora.

    Results

    We began by creating a new, highly contiguous genome assembly for theP. palmivora-resistant genotype SCA 6 (Additional file 1: Tables S1-S5), deposited in GenBank under accessions CP139290-CP139299. We then used this high-quality assembly to combine RNA and whole-genome sequencing data to discover several genes and pathways associated with resistance. Many of these are unique, i.e., differentially regulated in only one of the four populations (diverged 40 k–900 k generations). Among the pathways shared across all populations is phenylpropanoid biosynthesis, a metabolic pathway with well-documented roles in plant defense. One gene in this pathway, caffeoyl shikimate esterase (CSE), was upregulated across all four populations following pathogen treatment, indicating its broad importance for cacao’s defense response. Further experimental evidence suggests this gene hydrolyzes caffeoyl shikimate to create caffeic acid, an antimicrobial compound and known inhibitor ofPhytophthora spp.

    Conclusions

    Our results indicate most expression variation associated with resistance is unique to populations. Moreover, our findings demonstrate the value of using a broad sample of evolutionarily diverged populations for revealing the genetic bases of cacao resistance toP. palmivora. This approach has promise for further revealing and harnessing valuable genetic resources in this and other long-generation plants.

     
    more » « less
  2. Genomic structural variants (SVs) can play important roles in adaptation and speciation. Yet the overall fitness effects of SVs are poorly understood, partly because accurate population-level identification of SVs requires multiple high-quality genome assemblies. Here, we use 31 chromosome-scale, haplotype-resolved genome assemblies ofTheobroma cacao—an outcrossing, long-lived tree species that is the source of chocolate—to investigate the fitness consequences of SVs in natural populations. Among the 31 accessions, we find over 160,000 SVs, which together cover eight times more of the genome than single-nucleotide polymorphisms and short indels (125 versus 15 Mb). Our results indicate that a vast majority of these SVs are deleterious: they segregate at low frequencies and are depleted from functional regions of the genome. We show that SVs influence gene expression, which likely impairs gene function and contributes to the detrimental effects of SVs. We also provide empirical support for a theoretical prediction that SVs, particularly inversions, increase genetic load through the accumulation of deleterious nucleotide variants as a result of suppressed recombination. Despite the overall detrimental effects, we identify individual SVs bearing signatures of local adaptation, several of which are associated with genes differentially expressed between populations. Genes involved in pathogen resistance are strongly enriched among these candidates, highlighting the contribution of SVs to this important local adaptation trait. Beyond revealing empirical evidence for the evolutionary importance of SVs, these 31 de novo assemblies provide a valuable resource for genetic and breeding studies inT.cacao.

     
    more » « less
  3. Abstract Host-specific interactions can maintain genetic and phenotypic diversity in parasites that attack multiple host species. Host diversity, in turn, may promote parasite diversity by selection for genetic divergence or plastic responses to host type. The parasitic weed purple witchweed [ Striga hermonthica (Delile) Benth.] causes devastating crop losses in sub-Saharan Africa and is capable of infesting a wide range of grass hosts. Despite some evidence for host adaptation and host-by- Striga genotype interactions, little is known about intraspecific Striga genomic diversity. Here we present a study of transcriptomic diversity in populations of S. hermonthica growing on different hosts (maize [ Zea mays L.] vs. grain sorghum [ Sorghum bicolor (L.) Moench]). We examined gene expression variation and differences in allelic frequency in expressed genes of aboveground tissues from populations in western Nigeria parasitizing each host. Despite low levels of host-based genome-wide differentiation, we identified a set of parasite transcripts specifically associated with each host. Parasite genes in several different functional categories implicated as important in host–parasite interactions differed in expression level and allele on different hosts, including genes involved in nutrient transport, defense and pathogenesis, and plant hormone response. Overall, we provide a set of candidate transcripts that demonstrate host-specific interactions in vegetative tissues of the emerged parasite S. hermonthica . Our study shows how signals of host-specific processes can be detected aboveground, expanding the focus of host–parasite interactions beyond the haustorial connection. 
    more » « less
  4. Plastid genomes (plastomes) vary enormously in size and gene content among the many lineages of nonphotosynthetic plants, but key lineages remain unexplored. We therefore investigated plastome sequence and expression in the holoparasitic and morphologically bizarre Balanophoraceae. The twoBalanophoraplastomes examined are remarkable, exhibiting features rarely if ever seen before in plastomes or in any other genomes. At 15.5 kb in size and with only 19 genes, they are among the most reduced plastomes known. They have no tRNA genes for protein synthesis, a trait found in only three other plastid lineages, and thusBalanophoraplastids must import all tRNAs needed for translation.Balanophoraplastomes are exceptionally compact, with numerous overlapping genes, highly reduced spacers, loss of allcis-spliced introns, and shrunken protein genes. With A+T contents of 87.8% and 88.4%, theBalanophoragenomes are the most AT-rich genomes known save for a single mitochondrial genome that is merely bloated with AT-rich spacer DNA. Most plastid protein genes inBalanophoraconsist of ≥90% AT, with several between 95% and 98% AT, resulting in the most biased codon usage in any genome described to date. A potential consequence of its radical compositional evolution is the novel genetic code used byBalanophoraplastids, in which TAG has been reassigned from stop to tryptophan. Despite its many exceptional properties, theBalanophoraplastome must be functional because all examined genes are transcribed, its only intron is correctlytrans-spliced, and its protein genes, although highly divergent, are evolving under various degrees of selective constraint.

     
    more » « less
  5. Summary

    Cowpea (Vigna unguiculata) cultivar B301 is resistant to races SG4 and SG3 of the root parasitic weedStriga gesnerioides, developing a hypersensitive response (HR) at the site of parasite attachment. By contrast, race SG4z overcomes B301 resistance and successfully parasitises the plant.

    Comparative transcriptomics andin silicoanalysis identified a small secreted effector protein dubbed Suppressor of Host Resistance 4z (SHR4z) in the SG4z haustorium that upon transfer to the host roots causes a loss of host immunity (i.e. decreased HR and increased parasite growth). SHR4z has significant homology to the short leucine‐rich repeat (LRR) domain of SOMATIC EMBRYOGENESIS RECEPTOR‐LIKE KINASE (SERK) family proteins and functions by binding to VuPOB1, a host BTB‐BACK domain‐containing ubiquitin E3 ligase homologue, leading to its rapid turnover.

    VuPOB1 is shown to be a positive regulator of HR since silencing of VuPOB1 expression in transgenic B301 roots lowers the frequency of HR and increases the levels of successful SG4 parasitism and overexpression decreases parasitism by SG4z.

    These findings provide new insights into how parasitic weeds overcome host defences and could potentially contribute to the development of novel strategies for controllingStrigaand other parasitic weeds thereby enhancing crop productivity and food security globally.

     
    more » « less
  6. Green plants (Viridiplantae) include around 450,000–500,000 species of great diversity and have important roles in terrestrial and aquatic ecosystems. Here, as part of the One Thousand Plant Transcriptomes Initiative, we sequenced the vegetative transcriptomes of 1,124 species that span the diversity of plants in a broad sense (Archaeplastida), including green plants (Viridiplantae), glaucophytes (Glaucophyta) and red algae (Rhodophyta). Our analysis provides a robust phylogenomic framework for examining the evolution of green plants. Most inferred species relationships are well supported across multiple species tree and supermatrix analyses, but discordance among plastid and nuclear gene trees at a few important nodes highlights the complexity of plant genome evolution, including polyploidy, periods of rapid speciation, and extinction. Incomplete sorting of ancestral variation, polyploidization and massive expansions of gene families punctuate the evolutionary history of green plants. Notably, we find that large expansions of gene families preceded the origins of green plants, land plants and vascular plants, whereas whole-genome duplications are inferred to have occurred repeatedly throughout the evolution of flowering plants and ferns. The increasing availability of high-quality plant genome sequences and advances in functional genomics are enabling research on genome evolution across the green tree of life. 
    more » « less