skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wallace, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Using high-resolution N-body simulations, we investigate the outcome of terrestrial planet formation at short (< 100 day) orbital periods under a migration-free model. The collisional and dynamical evolution of systems of nearly 106 self-interacting planetesimals are directly followed through the final planet assembly phase. This is done by first modeling the planetesimal evolution with the tree-based N-body code ChaNGa, and then passing the results to the hybrid-symplectic N-body code genga, once the particle count has dropped sufficiently. Previously, we showed that oligarchic growth fails to operate at arbitrarily short orbital periods. This leaves a distinct feature in the mass and orbital distribution of the planetary embryos. In this most recent work, we explore whether this boundary between oligarchic and non-oligarchic growth leaves any kind of imprint on the terrestrial planets that form. If so, this would provide an important clue to evaluate whether migration played a significant role in shaping the architecture systems of tightly-packed inner planets. 
    more » « less