skip to main content

Search for: All records

Creators/Authors contains: "Walther, Valentin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 21, 2023
  2. Abstract The recent observation of high-lying Rydberg states of excitons in semiconductors with relatively high binding energy motivates exploring their applications in quantum nonlinear optics and quantum information processing. Here, we study Rydberg excitation dynamics of a mesoscopic array of excitons to demonstrate its application in simulation of quantum many-body dynamics. We show that the Z 2 -ordered phase can be reached using physical parameters available for cuprous oxide (Cu 2 O) by optimizing driving laser parameters such as duration, intensity, and frequency. In an example, we study the application of our proposed system to solving the maximum independent set problem based on the Rydberg blockade effect.
    Free, publicly-accessible full text available June 6, 2023
  3. Free, publicly-accessible full text available April 1, 2023
  4. We investigate the interaction of weak light fields with two-dimensional lattices of atoms with high lying atomic Rydberg states. This system features different interactions that act on disparate length scales, from zero-range defect scattering of atomic excitations and finite-range dipole exchange processes to long-range Rydberg-state interactions, which span the entire array and can block multiple Rydberg excitations. Analyzing their interplay, we identify conditions that yield a nonlinear quantum mirror which coherently splits incident fields into correlated photon-pairs in a single transverse mode, while transmitting single photons unaffected. In particular, we find strong anti-bunching of the transmitted light with equal-time pair correlations that decrease exponentially with an increasing range of the Rydberg blockade. Such strong photon-photon interactions in the absence of photon losses open up promising avenues for the generation and manipulation of quantum light, and the exploration of many-body phenomena with interacting photons.
    Free, publicly-accessible full text available March 30, 2023
  5. Free, publicly-accessible full text available February 1, 2023
  6. Free, publicly-accessible full text available February 1, 2023
  7. Free, publicly-accessible full text available January 1, 2023
  8. Free, publicly-accessible full text available March 1, 2023
  9. Abstract Strong optical nonlinearities play a central role in realizing quantum photonic technologies. Exciton-polaritons, which result from the hybridization of material excitations and cavity photons, are an attractive candidate to realize such nonlinearities. While the interaction between ground state excitons generates a notable optical nonlinearity, the strength of such interactions is generally not sufficient to reach the regime of quantum nonlinear optics. Excited states, however, feature enhanced interactions and therefore hold promise for accessing the quantum domain of single-photon nonlinearities. Here we demonstrate the formation of exciton-polaritons using excited excitonic states in monolayer tungsten diselenide (WSe 2 ) embedded in a microcavity. The realized excited-state polaritons exhibit an enhanced nonlinear response ∼ $${g}_{{pol}-{pol}}^{2s} \sim 46.4\pm 13.9\,\mu {eV}\mu {m}^{2}$$ g p o l − p o l 2 s ~ 46.4 ± 13.9 μ e V μ m 2 which is ∼4.6 times that for the ground-state exciton. The demonstration of enhanced nonlinear response from excited exciton-polaritons presents the potential of generating strong exciton-polariton interactions, a necessary building block for solid-state quantum photonic technologies.
    Free, publicly-accessible full text available December 1, 2022
  10. Free, publicly-accessible full text available January 1, 2023