Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Non-pharmaceutical interventions (NPI) have been proven vital in the fight against the COVID-19 pandemic before the massive rollout of vaccinations. Considering the inherent epistemic-aleatoric uncertainty of parameters, accurate simulation and modeling of the interplay between the NPI and contagion dynamics are critical to the optimal design of intervention policies. We propose a modified SIRD-MPC model that combines a modified stochastic Susceptible-Infected-Recovered-Deceased (SIRD) compartment model with mixed epistemic-aleatoric parameters and Model Predictive Control (MPC), to develop robust NPI control policies to contain the infection of the COVID-19 pandemic with minimum economic impact. The simulation result indicates that our proposed model can significantly decrease the infection rate compared to the practical results under the same initial conditions.more » « less
-
While significant efforts have been attempted in the design, control, and optimization of complex networks, most existing works assume the network structure is known or readily available. However, the network topology can be radically recast after an adversarial attack and may remain unknown for subsequent analysis. In this work, we propose a novel Bayesian sequential learning approach to reconstruct network connectivity adaptively: A sparse Spike and Slab prior is placed on connectivity for all edges, and the connectivity learned from reconstructed nodes will be used to select the next node and update the prior knowledge. Central to our approach is that most realistic networks are sparse, in that the connectivity degree of each node is much smaller compared to the number of nodes in the network. Sequential selection of the most informative nodes is realized via the between-node expected improvement. We corroborate this sequential Bayesian approach in connectivity recovery for a synthetic ultimatum game network and the IEEE-118 power grid system. Results indicate that only a fraction (∼50%) of the nodes need to be interrogated to reveal the network topology.more » « less
-
Abstract In this study, we carry out robust optimal design for the machining operations, one key process in wafer polishing in chip manufacturing, aiming to avoid the peculiar regenerative chatter and maximize the material removal rate (MRR) considering the inherent material and process uncertainty. More specifically, we characterize the cutting tool dynamics using a delay differential equation (DDE) and enlist the temporal finite element method (TFEM) to derive its approximate solution and stability index given process settings or design variables. To further quantify the inherent uncertainty, replications of TFEM under different realizations of random uncontrollable variables are performed, which however incurs extra computational burden. To eschew the deployment of such a crude Monte Carlo (MC) approach at each design setting, we integrate the stochastic TFEM with a stochastic surrogate model, stochastic kriging, in an active learning framework to sequentially approximate the stability boundary. The numerical result suggests that the nominal stability boundary attained from this method is on par with that from the crude MC, but only demands a fraction of the computational overhead. To further ensure the robustness of process stability, we adopt another surrogate, the Gaussian process, to predict the variance of the stability index at unexplored design points and identify the robust stability boundary per the conditional value at risk (CVaR) criterion. Therefrom, an optimal design in the robust stable region that maximizes the MRR can be identified.more » « less
-
The ongoing COVID-19 pandemic has inflicted tremendous economic and societal losses. In the absence of pharmaceutical interventions, the population behavioral response, including situational awareness and adherence to non-pharmaceutical intervention policies, has a significant impact on contagion dynamics. Game-theoretic models have been used to reproduce the concurrent evolution of behavioral responses and disease contagion, and social networks are critical platforms on which behavior imitation between social contacts, even dispersed in distant communities, takes place. Such joint contagion dynamics has not been sufficiently explored, which poses a challenge for policies aimed at containing the infection. In this study, we present a multi-layer network model to study contagion dynamics and behavioral adaptation. It comprises two physical layers that mimic the two solitary communities, and one social layer that encapsulates the social influence of agents from these two communities. Moreover, we adopt high-order interactions in the form of simplicial complexes on the social influence layer to delineate the behavior imitation of individual agents. This model offers a novel platform to articulate the interaction between physically isolated communities and the ensuing coevolution of behavioral change and spreading dynamics. The analytical insights harnessed therefrom provide compelling guidelines on coordinated policy design to enhance the preparedness for future pandemics.more » « less
An official website of the United States government
