Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Agaian, Sos S.; DelMarco, Stephen P.; Asari, Vijayan K. (Ed.)High accuracy localization and user positioning tracking is critical in improving the quality of augmented reality environments. The biggest challenge facing developers is localizing the user based on visible surroundings. Current solutions rely on the Global Positioning System (GPS) for tracking and orientation. However, GPS receivers have an accuracy of about 10 to 30 meters, which is not accurate enough for augmented reality, which needs precision measured in millimeters or smaller. This paper describes the development and demonstration of a head-worn augmented reality (AR) based vision-aid indoor navigation system, which localizes the user without relying on a GPS signal. Commercially available augmented reality head-set allows individuals to capture the field of vision using the front-facing camera in a real-time manner. Utilizing captured image features as navigation-related landmarks allow localizing the user in the absence of a GPS signal. The proposed method involves three steps: a detailed front-scene camera data is collected and generated for landmark recognition; detecting and locating an individual’s current position using feature matching, and display arrows to indicate areas that require more data collects if needed. Computer simulations indicate that the proposed augmented reality-based vision-aid indoor navigation system can provide precise simultaneous localization and mapping in a GPS-denied environment. Keywords: Augmented-reality, navigation, GPS, HoloLens, vision, positioning system, localizationmore » « less
-
which can assure the security of the country boarder and aid in search and rescue missions. This paper offers a novel “handsfree” tool for aerial border surveillance, search and rescue missions using head-mounted eye tracking technology. The contributions of this work are: i) a gaze based aerial boarder surveillance object classification and recognition framework; ii) real-time object detection and identification system in nonscanned regions; iii) investigating the scan-path (fixation and non-scanned) provided by mobile eye tracker can help improve training professional search and rescue organizations or even artificial intelligence robots for searching and rescuing missions. The proposed system architecture is further demonstrated using a dataset of large-scale real-life head-mounted eye tracking data. Keywords—Head-mounted eye tracking technology, Aerial border surveillance, and search and rescue missionsmore » « less
-
Agaian, Sos S.; Jassim, Sabah A. (Ed.)Face recognition technologies have been in high demand in the past few decades due to the increase in human-computer interactions. It is also one of the essential components in interpreting human emotions, intentions, facial expressions for smart environments. This non-intrusive biometric authentication system relies on identifying unique facial features and pairing alike structures for identification and recognition. Application areas of facial recognition systems include homeland and border security, identification for law enforcement, access control to secure networks, authentication for online banking and video surveillance. While it is easy for humans to recognize faces under varying illumination conditions, it is still a challenging task in computer vision. Non-uniform illumination and uncontrolled operating environments can impair the performance of visual-spectrum based recognition systems. To address these difficulties, a novel Anisotropic Gradient Facial Recognition (AGFR) system that is capable of autonomous thermal infrared to visible face recognition is proposed. The main contribution of this paper includes a framework for thermal/fused-thermal-visible to visible face recognition system and a novel human-visual-system inspired thermal-visible image fusion technique. Extensive computer simulations using CARL, IRIS, AT&T, Yale and Yale-B databases demonstrate the efficiency, accuracy, and robustness of the AGFR system. Keywords: Infrared thermal to visible facial recognition, anisotropic gradient, visible-to-visible face recognition, nonuniform illumination face recognition, thermal and visible face fusion methodmore » « less
An official website of the United States government
