skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Brabeeba"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    In this paper, we consider networks of deterministic spiking neurons, firing synchronously at discrete times. We consider the problem of translating temporal information into spatial information in such networks, an important task that is carried out by actual brains. Specifically, we define two problems: "First Consecutive Spikes Counting" and "Total Spikes Counting", which model temporal-coding and rate-coding aspects of temporal-to-spatial translation respectively. Assuming an upper bound of T on the length of the temporal input signal, we design two networks that solve two problems, each using O(log T) neurons and terminating in time T+1. We also prove that these bounds are tight. 
    more » « less
  2. In this paper, we consider networks of deterministic spiking neurons, firing synchronously at discrete times. We consider the problem of translating temporal information into spatial information in such networks, an important task that is carried out by actual brains. Specifically, we define two problems:“First Consecutive Spikes Counting” and “Total Spikes Counting”, which model temporal-coding and rate-coding aspects of temporal-to-spatial translation respectively. Assuming an upper bound of T on the length of the temporal input signal, we design two networks that solve two problems, each using O(logT) neurons and terminating in time T+ 1. We also prove that these bounds are tight. 
    more » « less