skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Wang, Brian"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Modern smart buildings and environments rely on sensory infrastructure to capture and process information about their inhabitants. However, it remains challenging to ensure that this infrastructure complies with privacy norms, preferences, and regulations; individuals occupying smart environments are often occupied with their tasks, lack awareness of the surrounding sensing mechanisms, and are non-technical experts. This problem is only exacerbated by the increasing number of sensors being deployed in these environments, as well as services seeking to use their sensory data. As a result, individuals face an unmanageable number of privacy decisions, preventing them from effectively behaving as their own “privacy firewall” for filtering and managing the multitude of personal information flows. These decisions often require qualitative reasoning over privacy regulations, understanding privacy-sensitive contexts, and applying various privacy transformations when necessary We propose the use of Large Language Models (LLMs), which have demonstrated qualitative reasoning over social/legal norms, sensory data, and program synthesis, all of which are necessary for privacy firewalls. We present PrivacyOracle, a prototype system for configuring privacy firewalls on behalf of users using LLMs, enabling automated privacy decisions in smart built environments. Our evaluation shows that PrivacyOracle achieves up to 
    more » « less
    Free, publicly-accessible full text available May 23, 2025
  2. Machine learning at the extreme edge has enabled a plethora of intelligent, time-critical, and remote applications. However, deploying interpretable artificial intelligence systems that can perform high-level symbolic reasoning and satisfy the underlying system rules and physics within the tight platform resource constraints is challenging. In this paper, we introduceTinyNS, the first platform-aware neurosymbolic architecture search framework for joint optimization of symbolic and neural operators.TinyNSprovides recipes and parsers to automatically write microcontroller code for five types of neurosymbolic models, combining the context awareness and integrity of symbolic techniques with the robustness and performance of machine learning models.TinyNSuses a fast, gradient-free, black-box Bayesian optimizer over discontinuous, conditional, numeric, and categorical search spaces to find the best synergy of symbolic code and neural networks within the hardware resource budget. To guarantee deployability,TinyNStalks to the target hardware during the optimization process. We showcase the utility ofTinyNSby deploying microcontroller-class neurosymbolic models through several case studies. In all use cases,TinyNSoutperforms purely neural or purely symbolic approaches while guaranteeing execution on real hardware.

     
    more » « less
  3. null (Ed.)
    The increased availability of on-body sensors gives researchers access to rich time-series data, many of which are related to human health conditions. Sharing such data can allow cross-institutional collaborations that create advanced data-driven models to make inferences on human well-being. However, such data are usually considered privacy-sensitive, and publicly sharing this data may incur significant privacy concerns. In this work, we seek to protect clinical time-series data against membership inference attacks, while maximally retaining the data utility. We achieve this by adding an imperceptible noise to the raw data. Known as adversarial perturbations, the noise is specially trained to force a deep learning model to make inference mistakes (in our case, mispredicting user identities). Our preliminary results show that our solution can better protect the data from membership inference attacks than the baselines, while succeeding in all the designed data quality checks. 
    more » « less
  4. Pervasive sensing has enabled continuous monitoring of user physiological state through mobile and wearable devices, allowing for large scale user studies to be conducted, such as those found in mHealth. However, current mHealth studies are limited in their ability of allowing users to express their privacy preferences on the data they share across multiple entities involved in a research study. In this work, we present mPolicy, a privacy policy language for study participants to express the context-aware and data-handling policies needed for mHealth. In addition, we provide a privacy-adaptive policy creation mechanism for byproduct data (such as motion inferences). Lastly, we create a software library called privLib for implementing parsing, enforcement, and policy creation on byproduct data for mPolicy. We evaluate the latency overhead of these operations, and discuss future improvements for scaling to realistic mHealth scenarios. 
    more » « less
  5. Abstract

    Digital devices are the essential building blocks of any modern electronic system. Fibres containing digital devices could enable fabrics with digital system capabilities for applications in physiological monitoring, human-computer interfaces, and on-body machine-learning. Here, a scalable preform-to-fibre approach is used to produce tens of metres of flexible fibre containing hundreds of interspersed, digital temperature sensors and memory devices with a memory density of ~7.6 × 105bits per metre. The entire ensemble of devices are individually addressable and independently operated through a single connection at the fibre edge, overcoming the perennial single-fibre single-device limitation and increasing system reliability. The digital fibre, when incorporated within a shirt, collects and stores body temperature data over multiple days, and enables real-time inference of wearer activity with an accuracy of 96% through a trained neural network with 1650 neuronal connections stored within the fibre. The ability to realise digital devices within a fibre strand which can not only measure and store physiological parameters, but also harbour the neural networks required to infer sensory data, presents intriguing opportunities for worn fabrics that sense, memorise, learn, and infer situational context.

     
    more » « less