skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, C"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The latency and control overhead of sending the preamble in synchronous communications can be excessive when transmitting short sensing/control messages. To reduce these overheads, this work proposes a preamble-free solution based on the framework of quickest change detection. Specific contributions include a joint decoding/demodulation scheme that is provably asymptotically optimal, and a more practical CuSum-like implementation. Numerical results show that the proposed scheme reduces the latency by 47%–79% when compared to the preamble-based solutions. The scheme is also inherently robust and automatically adapts to any unknown underlying SNRs. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  2. Free, publicly-accessible full text available May 23, 2026
  3. Free, publicly-accessible full text available May 23, 2026
  4. In this paper, we address the challenges of asynchronous gradient descent in distributed learning environments, particularly focusing on addressing the challenges of stale gradients and the need for extensive communication resources. We develop a novel communication efficient framework that incorporates a gradient evaluation algorithm to assess and utilize delayed gradients based on their quality, ensuring efficient and effective model updates while significantly reducing communication overhead. Our proposed algorithm requires agents to only send the norm of the gradients rather than the computed gradient. The server then decides whether to accept the gradient if the ratio between the norm of the gradient and the distance between the global model parameter and the local model parameter exceeds a certain threshold. With the proper choice of the threshold, we show that the convergence rate achieves the same order as the synchronous stochastic gradient without depending on the staleness value unlike most of the existing works. Given the computational complexity of the initial algorithm, we introduce a simplified variant that prioritizes the practical applicability without compromising on the convergence rates. Our simulations demonstrate that our proposed algorithms outperform existing state-of-the-art methods, offering improved convergence rates, stability, accuracy, and resource consumption. 
    more » « less
    Free, publicly-accessible full text available May 22, 2026
  5. Free, publicly-accessible full text available April 28, 2026
  6. Free, publicly-accessible full text available May 1, 2026
  7. Free, publicly-accessible full text available January 19, 2026
  8. Land surface temperature (LST) derived from satellite observations and weather modeling has been widely used for investigating Earth surface-atmosphere energy exchange and radiation budget. However, satellite-derived LST has a trade-off between spatial and temporal resolutions and missing observations caused by clouds, while there are limitations such as potential bias and expensive computation in model calibration and simulation for weather modeling. To mitigate those limitations, we proposed a WRFM framework to estimate LST at a spatial resolution of 1 km and temporal resolution of an hour by integrating the Weather Research and Forecasting (WRF) model and MODIS satellite data using the morphing technique. We tested the framework in eight counties, Iowa, USA, including urban and rural areas, to generate hourly LSTs from June 1st to August 31st, 2019, at a 1 km resolution. Upon evaluation with in-situ LST measurements, our WRFM framework has demonstrated its ability to capture hourly LSTs under both clear and cloudy conditions, with a root mean square error (RMSE) of 2.63 K and 3.75 K, respectively. Additionally, the assessment with satellite LST observations has shown that the WRFM framework can effectively reduce the bias magnitude in LST from the WRF simulation, resulting in a reduction of the average RMSE over the study area from 4.34 K (daytime) and 4.12 K (nighttime) to 2.89 K (daytime) and 2.75 K (nighttime), respectively, while still capturing the hourly patterns of LST. Overall, the WRFM is effective in integrating the complementary advantages of satellite observations and weather modeling and can generate LSTs with high spatiotemporal resolutions in areas with complex landscapes (e.g., urban). 
    more » « less
    Free, publicly-accessible full text available November 20, 2025