skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Chongmin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Charge transfer or redistribution at oxide heterointerfaces is a critical phenomenon, often leading to remarkable properties such as two-dimensional electron gas and interfacial ferromagnetism. Despite studies on LaNiO3/LaFeO3superlattices and heterostructures, the direction and magnitude of the charge transfer remain debated, with some suggesting no charge transfer due to the high stability of Fe3+(3d5). Here, we synthesized a series of epitaxial LaNiO3/LaFeO3superlattices and demonstrated partial (up to ~0.5 e/interface unit cell) charge transfer from Fe to Ni near the interface, supported by density functional theory simulations and spectroscopic evidence of changes in Ni and Fe oxidation states. The electron transfer from LaFeO3to LaNiO3and the subsequent rearrangement of the Fe 3d band create an unexpected metallic ground state within the LaFeO3layer, strongly influencing the in-plane transport properties across the superlattice. Moreover, we establish a direct correlation between interfacial charge transfer and in-plane electrical transport properties, providing insights for designing functional oxide heterostructures with emerging properties. 
    more » « less
    Free, publicly-accessible full text available December 20, 2025
  2. Abstract Rationalizing synthetic pathways is crucial for material design and property optimization, especially for polymorphic and metastable phases. Over‐stoichiometric rocksalt (ORX) compounds, characterized by their face‐sharing configurations, are a promising group of materials with unique properties; however, their development is significantly hindered by challenges in synthesizability. Here, taking the recently identified Li superionic conductor, over‐stoichiometric rocksalt Li–In–Sn–O (o‐LISO) material as a prototypical ORX compound, the mechanisms of phase formation are systematically investigated. It is revealed that the spinel‐like phase with unconventional stoichiometry forms as coherent precipitate from the high‐temperature‐stabilized cation‐disordered rocksalt phase upon fast cooling. This process prevents direct phase decomposition and kinetically locks the system in a metastable state with the desired face‐sharing Li configurations. This insight enables us to enhance the ionic conductivity of o‐LISO to be >1 mS cm−1at room temperature through low‐temperature post‐annealing. This work offers insights into the synthesis of ORX materials and highlights important opportunities in this new class of materials. 
    more » « less
    Free, publicly-accessible full text available December 23, 2025
  3. Abstract Twinning, on par with dislocations, is critically required in plastic deformation of hexagonal close-packed crystals at low temperatures. In contrast to that in cubic-structured crystals, twinning in hexagonal close-packed crystals requires atomic shuffles in addition to shear. Though the twinning shear that is carried by twinning dislocations has been captured for decades, direct experimental observation of the atomic shuffles, especially when the shuffling mode is not unique and does not confine to the plane of shear, remains a formidable challenge to date. Here, by using in-situ transmission electron microscopy, we directly capture the atomic mechanism of the$$\left\{11\bar{2}1\right\}$$ 11 2 ¯ 1 twinning in hexagonal close packed rhenium nanocrystals. Results show that the$$\left\{11\bar{2}1\right\}$$ 11 2 ¯ 1 twinning is dominated by the (b1/2, h1/2) twinning disconnections. In contrast to conventional expectations, the atomic shuffles accompanying the twinning disconnections proceed on alternative basal planes along 1/6$$\left\langle 1\bar{1}00\right\rangle$$ 1 1 ¯ 00 , which may be attributed to the free surface in nanocrystal samples, leading to a lack of mirror symmetry across the$$\left\{11\bar{2}1\right\}$$ 11 2 ¯ 1 twin boundary. 
    more » « less
  4. Free, publicly-accessible full text available December 1, 2025
  5. Abstract Oxides with a face-centred cubic (fcc) anion sublattice are generally not considered as solid-state electrolytes as the structural framework is thought to be unfavourable for lithium (Li) superionic conduction. Here we demonstrate Li superionic conductivity in fcc-type oxides in which face-sharing Li configurations have been created through cation over-stoichiometry in rocksalt-type lattices via excess Li. We find that the face-sharing Li configurations create a novel spinel with unconventional stoichiometry and raise the energy of Li, thereby promoting fast Li-ion conduction. The over-stoichiometric Li–In–Sn–O compound exhibits a total Li superionic conductivity of 3.38 × 10−4 S cm−1at room temperature with a low migration barrier of 255 meV. Our work unlocks the potential of designing Li superionic conductors in a prototypical structural framework with vast chemical flexibility, providing fertile ground for discovering new solid-state electrolytes. 
    more » « less
  6. Amidst the rapid expansion of the electric vehicle industry, the need for alternative battery technologies that balance economic viability with sustainability has never been more critical. Here, we report that common lithium salts of Li2CO3 and Li2SO4 are transformed into cathode active mass in Li-ion batteries by ball milling to form a composite with Cu2S. The optimal composite cathode comprising Li2CO3, Li2SO4, and Cu2S, with a practical active mass loading of 12.5-13.0 mg/cm2, demonstrates a reversible capacity of 247 mAh/g based on the total mass of Cu2S and the lithium salts, a specific energy of 716 Wh/kg, and a stable cycle life. This cathode chemistry rivals layered oxide cathodes of Li-ion batteries in energy density but at substantially reduced cost and ecological footprint. Mechanistic investigations reveal that in the composite Li2CO3 serves as the primary active mass, Li2SO4 enhances kinetic properties and reversibility, and Cu2S stabilizes the resulting anionic radicals for reversibility as a binding agent. Our findings pave the way for directly using precursor lithium salts as cathodes for Li-ion batteries to meet the ever-increasing market demands sustainably. 
    more » « less
  7. Abstract Ultrahigh surface-to-volume ratio in nanoscale materials, could dramatically facilitate mass transport, leading to surface-mediated diffusion similar to Coble-type creep in polycrystalline materials. Unfortunately, the Coble creep is just a conceptual model, and the associated physical mechanisms of mass transport have never been revealed at atomic scale. Akin to the ambiguities in Coble creep, atomic surface diffusion in nanoscale crystals remains largely unclear, especially when mediating yielding and plastic flow. Here, by using in situ nanomechanical testing under high-resolution transmission electron microscope, we find that the diffusion-assisted dislocation nucleation induces the transition from a normal to an inverse Hall-Petch-like relation of the strength-size dependence and the surface-creep leads to the abnormal softening in flow stress with the reduction in size of nanoscale silver, contrary to the classical “alternating dislocation starvation” behavior in nanoscale platinum. This work provides insights into the atomic-scale mechanisms of diffusion-mediated deformation in nanoscale materials, and impact on the design for ultrasmall-sized nanomechanical devices. 
    more » « less