skip to main content


Search for: All records

Creators/Authors contains: "Wang, Dashun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The science of science has attracted growing research interests, partly due to the increasing availability of large-scale datasets capturing the innerworkings of science. These datasets, and the numerous linkages among them, enable researchers to ask a range of fascinating questions about how science works and where innovation occurs. Yet as datasets grow, it becomes increasingly difficult to track available sources and linkages across datasets. Here we present SciSciNet, a large-scale open data lake for the science of science research, covering over 134M scientific publications and millions of external linkages to funding and public uses. We offer detailed documentation of pre-processing steps and analytical choices in constructing the data lake. We further supplement the data lake by computing frequently used measures in the literature, illustrating how researchers may contribute collectively to enriching the data lake. Overall, this data lake serves as an initial but useful resource for the field, by lowering the barrier to entry, reducing duplication of efforts in data processing and measurements, improving the robustness and replicability of empirical claims, and broadening the diversity and representation of ideas in the field.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Setbacks are an integral part of a scientific career, yet little is known about their long-term effects. Here we examine junior scientists applying for National Institutes of Health R01 grants. By focusing on proposals fell just below and just above the funding threshold, we compare near-miss with narrow-win applicants, and find that an early-career setback has powerful, opposing effects. On the one hand, it significantly increases attrition, predicting more than a 10% chance of disappearing permanently from the NIH system. Yet, despite an early setback, individuals with near misses systematically outperform those with narrow wins in the longer run. Moreover, this performance advantage seems to go beyond a screening mechanism, suggesting early-career setback appears to cause a performance improvement among those who persevere. Overall, these findings are consistent with the concept that “what doesn’t kill me makes me stronger,” which may have broad implications for identifying, training and nurturing junior scientists.

     
    more » « less
  6. One of the most universal trends in science and technology today is the growth of large teams in all areas, as solitary researchers and small teams diminish in prevalence1,2,3. Increases in team size have been attributed to the specialization of scientific activities3, improvements in communication technology4,5, or the complexity of modern problems that require interdisciplinary solutions6,7,8. This shift in team size raises the question of whether and how the character of the science and technology produced by large teams differs from that of small teams. Here we analyse more than 65 million papers, patents and software products that span the period 1954–2014, and demonstrate that across this period smaller teams have tended to disrupt science and technology with new ideas and opportunities, whereas larger teams have tended to develop existing ones. Work from larger teams builds on more-recent and popular developments, and attention to their work comes immediately. By contrast, contributions by smaller teams search more deeply into the past, are viewed as disruptive to science and technology and succeed further into the future—if at all. Observed differences between small and large teams are magnified for higher-impact work, with small teams known for disruptive work and large teams for developing work. Differences in topic and research design account for a small part of the relationship between team size and disruption; most of the effect occurs at the level of the individual, as people move between smaller and larger teams. These results demonstrate that both small and large teams are essential to a flourishing ecology of science and technology, and suggest that, to achieve this, science policies should aim to support a diversity of team sizes. 
    more » « less