Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to nonfederal websites. Their policies may differ from this site.

Free, publiclyaccessible full text available September 1, 2025

A<sc>bstract</sc> Using covariant expansions, recent work showed that pole skipping happens in general holographic theories with bosonic fields at frequencies i(
l _{b}−s )2πT , wherel _{b}is the highest integer spin in the theory ands takes all positive integer values. We revisit this formalism in theories with gauge symmetry and upgrade the poleskipping condition so that it works without having to remove the gauge redundancy. We also extend the formalism by incorporating fermions with general spins and interactions and show that their presence generally leads to a separate tower of poleskipping points at frequencies i(l _{f}−s )2πT ,l _{f}being the highest halfinteger spin in the theory ands again taking all positive integer values. We also demonstrate the practical value of this formalism using a selection of examples with spins 0, $$ \frac{1}{2} $$ $\frac{1}{2}$, 1, $$ \frac{3}{2} $$ $\frac{3}{2}$, 2.Free, publiclyaccessible full text available December 1, 2024 
A<sc>bstract</sc> We determine tree level, allorder celestial operator product expansions (OPEs) of gluons and gravitons in the maximally helicity violating (MHV) sector. We start by obtaining the allorder collinear expansions of MHV amplitudes using the inverse soft recursion relations that they satisfy. These collinear expansions are recast as celestial OPE expansions in bases of momentum as well as boost eigenstates. This shows that inverse soft recursion for MHV amplitudes is dual to OPE recursion in celestial conformal field theory.

A<sc>bstract</sc> In AdS/CFT, observables on the boundary are invariant under renormalization group (RG) flow in the bulk. In this paper, we study holographic entanglement entropy under bulk RG flow and find that it is indeed invariant. We focus on treelevel RG flow, where massive fields in a UV theory are integrated out to give the IR theory. We explicitly show that in several simple examples, holographic entanglement entropy calculated in the UV theory agrees with that calculated in the IR theory. Moreover, we give an argument for this agreement to hold for general treelevel RG flow. Along the way, we generalize the replica method of calculating holographic entanglement entropy to bulk theories that include matter fields with nonzero spin.
Free, publiclyaccessible full text available November 1, 2024 
Abstract In general relativity (without matter), there is typically a one parameter family of static, maximally symmetric black hole solutions labeled by their mass. We show that there are situations with many more black holes. We study asymptotically antide Sitter solutions in six and seven dimensions having a conformal boundary which is a product of spheres cross time. We show that the number of families of static, maximally symmetric black holes depends on the ratio, λ , of the radii of the boundary spheres. As λ approaches a critical value, λ c , the number of such families becomes infinite. In each family, we can take the size of the black hole to zero, obtaining an infinite number of static, maximally symmetric nonblack hole solutions. We discuss several applications of these results, including Hawking–Page phase transitions and the phase diagram of dual field theories on a product of spheres, new positive energy conjectures, and more.more » « less

A bstract We prove the equivalence of two holographic computations of the butterfly velocity in higherderivative theories with Lagrangian built from arbitrary contractions of curvature tensors. The butterfly velocity characterizes the speed at which local perturbations grow in chaotic manybody systems and can be extracted from the outoftimeorder correlator. This leads to a holographic computation in which the butterfly velocity is determined from a localized shockwave on the horizon of a dual black hole. A second holographic computation uses entanglement wedge reconstruction to define a notion of operator size and determines the butterfly velocity from certain extremal surfaces. By direct computation, we show that these two butterfly velocities match precisely in the aforementioned class of gravitational theories. We also present evidence showing that this equivalence holds in all gravitational theories. Along the way, we prove a number of general results on shockwave spacetimes.more » « less

null (Ed.)A bstract Multicollinear factorization limits provide a window to study how locality and unitarity of scattering amplitudes can emerge dynamically from celestial CFT, the conjectured holographic dual to gauge and gravitational theories in flat space. To this end, we first use asymptotic symmetries to commence a systematic study of conformal and KacMoody descendants in the OPE of celestial gluons. Recursive application of these OPEs then equips us with a novel holographic method of computing the multicollinear limits of gluon amplitudes. We perform this computation for some of the simplest helicity assignments of the collinear particles. The prediction from the OPE matches with Mellin transforms of the expressions in the literature to all orders in conformal descendants. In a similar vein, we conclude by studying multicollinear limits of graviton amplitudes in the leading approximation of sequential doublecollinear limits, again finding a consistency check against the leading order OPE of celestial gravitons.more » « less