skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: All-order celestial OPE from on-shell recursion
A<sc>bstract</sc> We determine tree level, all-order celestial operator product expansions (OPEs) of gluons and gravitons in the maximally helicity violating (MHV) sector. We start by obtaining the all-order collinear expansions of MHV amplitudes using the inverse soft recursion relations that they satisfy. These collinear expansions are recast as celestial OPE expansions in bases of momentum as well as boost eigenstates. This shows that inverse soft recursion for MHV amplitudes is dual to OPE recursion in celestial conformal field theory.  more » « less
Award ID(s):
2107939
PAR ID:
10511744
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
JHEP
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
10
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A bstract Multi-collinear factorization limits provide a window to study how locality and unitarity of scattering amplitudes can emerge dynamically from celestial CFT, the conjectured holographic dual to gauge and gravitational theories in flat space. To this end, we first use asymptotic symmetries to commence a systematic study of conformal and Kac-Moody descendants in the OPE of celestial gluons. Recursive application of these OPEs then equips us with a novel holographic method of computing the multi-collinear limits of gluon amplitudes. We perform this computation for some of the simplest helicity assignments of the collinear particles. The prediction from the OPE matches with Mellin transforms of the expressions in the literature to all orders in conformal descendants. In a similar vein, we conclude by studying multi-collinear limits of graviton amplitudes in the leading approximation of sequential double-collinear limits, again finding a consistency check against the leading order OPE of celestial gravitons. 
    more » « less
  2. A<sc>bstract</sc> In this paper, we analyze the loop corrections to celestial OPE for gluons and gravitons. Even at the loop level, the soft gluons and gravitons have conformal dimensions ∆ = 1−$${\mathbb{Z}}_{\ge 0}$$. The only novelty is the presence of higher poles. At one loop level, there are two types of conformal soft gluons with a single pole and a double pole in the ∆ plane. The celestial OPEs are obtained using the collinear splitting functions. In the case of gluons, the splitting functions receive loop corrections. After taking the holomorphic soft limit, we find the OPE of conformal soft gluons. We find a novel mixing of simple and double poles soft gluon operators in the OPE. In the case of gravitons, where splitting functions are known to be all loop exact, we still find a wedge algebra ofwwhich is in addition to the wedge algebra ofw1+∞already found by Strominger. 
    more » « less
  3. null (Ed.)
    The operator product expansion (OPE) on the celestial sphere of conformal primary gluons and gravitons is studied. Asymptotic symmetries imply recursion relations between products of operators whose conformal weights differ by half-integers. It is shown, for tree-level Einstein-Yang-Mills theory, that these recursion relations are so constraining that they completely fix the leading celestial OPE coefficients in terms of the Euler beta function. The poles in the beta functions are associated with conformally soft currents. 
    more » « less
  4. A<sc>bstract</sc> We study the collinear factorization of off-shell scattering amplitudes in maximally supersymmetric Yang-Mills (sYM) theory. These are constructed starting from six-dimensional$$ \mathcal{N} $$ N = (1) sYM, taking advantage of an available unconstrained spinor-helicity formalism combined with a unitarity-cut sewing procedure. After generalized dimensional reduction, their collinear behavior is dissected with assistance from the Method of Regions. We then construct off-shell splitting amplitudes directly using the same techniques, establishing equivalence to the amplitude analysis. The calculations are performed at one-loop order. 
    more » « less
  5. A<sc>bstract</sc> We analyze so-called generalized Veneziano and generalized Virasoro amplitudes. Under some physical assumptions, we find that their spectra must satisfy an over-determined set of non-linear recursion relations. The recursion relation for the generalized Veneziano amplitudes can be solved analytically and yields a two-parameter family which includes the Veneziano amplitude, the one-parameter family of Coon amplitudes, and a larger two-parameter family of amplitudes with an infinite tower of spins at each mass level. In the generalized Virasoro case, the only consistent solution is the string spectrum. 
    more » « less