skip to main content

Search for: All records

Creators/Authors contains: "Wang, Guofeng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 1, 2023
  2. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We alsomore »studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO.« less
    Free, publicly-accessible full text available May 18, 2023
  3. Free, publicly-accessible full text available February 1, 2023
  4. Despite the well-known tendency for many alloys to undergo ordering transformations, the microscopic mechanism of ordering and its dependence on alloy composition remains largely unknown. Using the example of Pt 85 Fe 15 and Pt 65 Fe 35 alloy nanoparticles (NPs), herein we demonstrate the composition-dependent ordering processes on the single-particle level, where the nanoscale size effect allows for close interplay between surface and bulk in controlling the phase evolution. Using in situ electron microscopy observations, we show that the ordering transformation in Pt 85 Fe 15 NPs during vacuum annealing occurs via the surface nucleation and growth of L1 2 -ordered Pt 3 Fe domains that propagate into the bulk, followed by the self-sacrifice transformation of the surface region of the L1 2 Pt 3 Fe into a Pt skin. By contrast, the ordering in Pt 65 Fe 35 NPs proceeds via an interface mechanism by which the rapid formation of an L1 0 PtFe skin occurs on the NPs and the transformation boundary moves inward along with outward Pt diffusion. Although both the “nucleation and growth” and the “interface” mechanisms result in a core–shell configuration with a thin Pt-rich skin, Pt 85 Fe 15 NPs have an L1more »2 Pt 3 Fe core, whereas Pt 65 Fe 35 NPs are composed of an L1 0 PtFe core. Using atomistic modeling, we identify the composition-dependent vacancy-assisted counterdiffusion of Pt and Fe atoms between the surface and core regions in controlling the ordering transformation pathway. This vacancy-assisted diffusion is further demonstrated by oxygen annealing, for which the selective oxidation of Fe results in a large number of Fe vacancies and thereby greatly accelerates the transformation kinetics.« less
    Free, publicly-accessible full text available April 5, 2023
  5. A review highlights improvements in synthesizing and stabilizing multielement nanoparticles.
    Free, publicly-accessible full text available April 8, 2023
  6. Employing the strong metal-support interaction (SMSI) effect for promoting the catalyst's activity toward the oxygen reduction reaction (ORR) is promising due to the electronic structure optimization and high utilization efficiency of platinum group metal (PGM) catalysts. Metal oxides as alternative supports for PGMs facilitate intrinsic activity and improve durability as compared to conventional carbon supports. However, the restricted mass and electron transfer at the metal/support interface need to be addressed. Herein, to strengthen the interaction at the metal/support interfaces and improve the utilization efficiency of PGM, an ultralow loading of Pd was embedded in a surface-oxygenated PdNiMnO porous film. The Mn-doping was designed to promote surface oxygenation using a facile anodization process that created sufficiently exposed interfaces between Pd and the support, strengthening the SMSI effects at the Pd/oxygenated support interface for enhancing ORR performance. Furthermore, the Ni-containing oxygenated catalyst served as both the active component for the oxygen evolution reaction (OER) and the functional support for stabilizing Pd, making PdNiMnO a bifunctional catalyst for zinc–air flow batteries (ZAFB). As a proof-of-concept, the ZAFB (PdNiMnO) shows a maximal power density of 211.6 mW cm −2 and outstanding cycling stability for over 2000 h with a minimal voltage gap of 0.69more »V at a current density of 10 mA cm −2 , superior to the state-of-the-art catalysts.« less
    Free, publicly-accessible full text available February 18, 2023
  7. Free, publicly-accessible full text available July 1, 2023
  8. Free, publicly-accessible full text available January 12, 2023
  9. High-quality single-component white phosphors are instrumental in realizing high-efficiency devices. Rare earth fluorides and carbon quantum dots have great potential in the white light-emitting diode (WLED) field due to their unique advantages. Here, Rare-earth single atom based NaGdF4:Tb3+/Eu3+@C:N/Eu3+ single phosphor with tunable full-color luminescence was reported. The results of density functional theory (DFT) calculation and experimental characterization show that C atoms cannot be replaced by Eu3+, but C atoms are more favorable for anchoring Eu3+ single atoms. The DFT was employed to optimize the structures of the C:N/Eu3+ and NaGdF4:Tb3+/Eu3+, and calculate the work function, optical properties, and charge density difference. The obtained tunable full-color single phosphor can emit stable light from blue to red or even white. The constructed WLED devices also have stable and excellent color performance, that is, a color rendering index of up to 95 and a lower color temperature, and it has broad application possibilities in WLEDs.