Near-Earth Asteroids (NEAs) are excellent laboratories for processes that affect airless body surfaces. S-complex (including V-type) NEAs were not expected to contain OH/H2O on their surfaces because they formed in the anhydrous regions of the solar system and their surface temperatures are high enough to remove these volatiles. However, a 3
This content will become publicly available on November 3, 2024
The microscopic mechanisms underpinning the spontaneous surface passivation of metals from ubiquitous water have remained largely elusive. Here, using in situ environmental electron microscopy to atomically monitor the reaction dynamics between aluminum surfaces and water vapor, we provide direct experimental evidence that the surface passivation results in a bilayer oxide film consisting of a crystalline-like Al(OH)3top layer and an inner layer of amorphous Al2O3. The Al(OH)3layer maintains a constant thickness of ~5.0 Å, while the inner Al2O3layer grows at the Al2O3/Al interface to a limiting thickness. On the basis of experimental data and atomistic modeling, we show the tunability of the dissociation pathways of H2O molecules with the Al, Al2O3, and Al(OH)3surface terminations. The fundamental insights may have practical significance for the design of materials and reactions for two seemingly disparate but fundamentally related disciplines of surface passivation and catalytic H2production from water.
more » « less- Award ID(s):
- 1905572
- NSF-PAR ID:
- 10535246
- Publisher / Repository:
- Science
- Date Published:
- Journal Name:
- Science Advances
- Volume:
- 9
- Issue:
- 44
- ISSN:
- 2375-2548
- Page Range / eLocation ID:
- edah5565
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract μ m feature typically indicative of OH/H2O was identified on other seemingly dry bodies in the inner solar system, raising the question of how widespread volatiles may be on NEAs. We observed 29 NEAs using both prism (0.7–2.52μ m) and LXD_short (1.67–4.2μ m) modes on SpeX on NASA’s IRTF in order to accurately characterize asteroid spectral type and the 3μ m region. Eight of the observed NEAs have a 3μ m absorption feature at >1σ (three of which are present to >2σ ), and they exhibit four identified band shape types. Possible sources for OH/H2O on these bodies include carbonaceous chondrite impacts and/or interactions with protons implanted by solar wind. Characteristics such as composition and aphelion appear to play an important role in the delivery and/or retention of OH/H2O, as all eight NEAs with an absorption feature are S-complex asteroids and six enter the main asteroid belt. Additionally, perihelion, size, albedo, and orbital period may play a minor role. Our observations determined that nominally anhydrous, inner solar system bodies, and therefore near-Earth space in general, contain more OH/H2O than previously expected. The identified trends should help predict which NEAs that have not yet been observed might contain OH/H2O on their surfaces. -
Abstract This work evaluates the passivation efficacy of thermal atomic layer deposited (ALD) Al 2 O 3 dielectric layer on self-catalyzed GaAs 1- x Sb x nanowires (NWs) grown using molecular beam epitaxy. A detailed assessment of surface chemical composition and optical properties of Al 2 O 3 passivated NWs with and without prior sulfur treatment were studied and compared to as-grown samples using x-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and low-temperature photoluminescence (PL) spectroscopy. The XPS measurements reveal that prior sulfur treatment followed by Al 2 O 3 ALD deposition abates III–V native oxides from the NW surface. However, the degradation in 4K-PL intensity by an order of magnitude observed for NWs with Al 2 O 3 shell layer compared to the as-grown NWs, irrespective of prior sulfur treatment, suggests the formation of defect states at the NW/dielectric interface contributing to non-radiative recombination centers. This is corroborated by the Raman spectral broadening of LO and TO Raman modes, increased background scattering, and redshift observed for Al 2 O 3 deposited NWs relative to the as-grown. Thus, our work seems to indicate the unsuitability of ALD deposited Al 2 O 3 as a passivation layer for GaAsSb NWs.more » « less
-
Abstract The chemical composition of the inner region of protoplanetary disks can trace the composition of planetary-building material. The exact elemental composition of the inner disk has not yet been measured and tensions between models and observations still exist. Recent advancements have shown UV shielding to be able to increase the emission of organics. Here, we expand on these models and investigate how UV shielding may impact chemical composition in the inner 5 au. In this work, we use the model from Bosman et al. and expand it with a larger chemical network. We focus on the chemical abundances in the upper disk atmosphere where the effects of water UV shielding are most prominent and molecular lines originate. We find rich carbon and nitrogen chemistry with enhanced abundances of C2H2, CH4, HCN, CH3CN, and NH3by >3 orders of magnitude. This is caused by the self-shielding of H2O, which locks oxygen in water. This subsequently results in a suppression of oxygen-containing species like CO and CO2. The increase in C2H2seen in the model with the inclusion of water UV shielding allows us to explain the observed C2H2abundance without resorting to elevated C/O ratios as water UV shielding induced an effectively oxygen-poor environment in oxygen-rich gas. Thus, water UV shielding is important for reproducing the observed abundances of hydrocarbons and nitriles. From our model result, species like CH4, NH3, and NO are expected to be observable with the James Webb Space Telescope (JWST).
-
Abstract Area‐selective deposition (ASD) is a forefront nanopatterning technique gaining substantial attention in the semiconductor industry. While current research primarily addresses single‐material ASD, exploring multi‐material ASD is essential for mitigating complexity in advanced nanopatterning. This study describes molybdenum hexafluoride (MoF6)‐mediated fluorination/passivation of the hydroxylated SiO2(SiO2‒OH) at 250 °C as a new method to pacify nucleation during subsequent ZnO and TiO2atomic layer deposition (ALD). In contrast, Al2O3ALD is not passivated on the fluorinated SiO2(SiO2‒F). The study further shows that Mo ALD using MoF6and silane (1 wt% SiH4in Ar) selectively proceeds on hydrogen‐terminated Si (Si‒H), whereas SiO2‒OH becomes fluorine‐passivated without observable Mo deposition. This enables subsequent ZnO and TiO2ASD on Mo versus SiO2‒F, as confirmed by X‐ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and scanning transmission electron microscopy (STEM). Proposed growth and inhibition mechanisms highlight the importance of the metal oxide precursor in achieving selectivity. Taken together, self‐aligned Mo/ZnO and Mo/TiO2nanoribbons are demonstrated on coplanar nanoscale Si‒H/SiO2‒OH patterns by sequentially integrating two individual ASD processes: 1) Mo ASD on Si‒H versus SiO2‒OH; and 2) ZnO or TiO2ASD on Mo versus SiO2‒F. This work highlights the potential for this approach in new ASD systems.
-
In this work, photoluminescence (PL), quantum efficiency and carrier dynamics are investigated in indium arsenide (InAs) nanowires (NWs) with various surface treatments, including a molecular beam epitaxy (MBE)-grown semiconductor shell passivation, sulfur-passivation, alumina (Al2O3) coating by atomic layer deposition (ALD) and polydimethylsiloxane (PDMS) spin-coating. The ALD-dielectric layer-coated InAs core-shell NWs show a maximum 13-fold increase in PL intensity. In contrast to the previous reports, this enhancement is found to be due to increased radiative rate from an enhanced Purcell factor, better thermal conductance and higher carrier injection within the NWs instead of improved surface quality. Numeric simulations confirm the experimentally observed increased radiative rate. Further improvements are suggested with even thicker capped InAs NWs. Carrier lifetime in surface-treated NWs is extended and shows long-term stability, critical for practical devices.