Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available July 1, 2024
-
Free, publicly-accessible full text available April 1, 2024
-
Free, publicly-accessible full text available March 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available January 1, 2024
-
Free, publicly-accessible full text available November 30, 2023
-
Centring is a commonly used technique in linear regression analysis. With centred data on both the responses and covariates, the ordinary least squares estimator of the slope parameter can be calculated from a model without the intercept. If a subsample is selected from a centred full data, the subsample is typically uncentred. In this case, is it still appropriate to fit a model without the intercept? The answer is yes, and we show that the least squares estimator on the slope parameter obtained from a model without the intercept is unbiased and it has a smaller variance covariance matrix in the Loewner order than that obtained from a model with the intercept. We further show that for noninformative weighted subsampling when a weighted least squares estimator is used, using the full data weighted means to relocate the subsample improves the estimation efficiency.