Abstract With advances in biomedical research, biomarkers are becoming increasingly important prognostic factors for predicting overall survival, while the measurement of biomarkers is often censored due to instruments' lower limits of detection. This leads to two types of censoring: random censoring in overall survival outcomes and fixed censoring in biomarker covariates, posing new challenges in statistical modeling and inference. Existing methods for analyzing such data focus primarily on linear regression ignoring censored responses or semiparametric accelerated failure time models with covariates under detection limits (DL). In this paper, we propose a quantile regression for survival data with covariates subject to DL. Comparing to existing methods, the proposed approach provides a more versatile tool for modeling the distribution of survival outcomes by allowing covariate effects to vary across conditional quantiles of the survival time and requiring no parametric distribution assumptions for outcome data. To estimate the quantile process of regression coefficients, we develop a novel multiple imputation approach based on another quantile regression for covariates under DL, avoiding stringent parametric restrictions on censored covariates as often assumed in the literature. Under regularity conditions, we show that the estimation procedure yields uniformly consistent and asymptotically normal estimators. Simulation results demonstrate the satisfactory finite‐sample performance of the method. We also apply our method to the motivating data from a study of genetic and inflammatory markers of Sepsis.
more »
« less
Optimal subsampling for semi‐parametric accelerated failure time models with massive survival data using a rank‐based approach
Subsampling is a practical strategy for analyzing vast survival data, which are progressively encountered across diverse research domains. While the optimal subsampling method has been applied to inferences for Cox models and parametric accelerated failure time (AFT) models, its application to semi‐parametric AFT models with rank‐based estimation have received limited attention. The challenges arise from the non‐smooth estimating function for regression coefficients and the seemingly zero contribution from censored observations in estimating functions in the commonly seen form. To address these challenges, we develop optimal subsampling probabilities for both event and censored observations by expressing the estimating functions through a well‐defined stochastic process. Meanwhile, we apply an induced smoothing procedure to the non‐smooth estimating functions. As the optimal subsampling probabilities depend on the unknown regression coefficients, we employ a two‐step procedure to obtain a feasible estimation method. An additional benefit of the method is its ability to resolve the issue of underestimation of the variance when the subsample size approaches the full sample size. We validate the performance of our estimators through a simulation study and apply the methods to analyze the survival time of lymphoma patients in the surveillance, epidemiology, and end results program.
more »
« less
- Award ID(s):
- 2105571
- PAR ID:
- 10596297
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Statistics in Medicine
- Volume:
- 43
- Issue:
- 24
- ISSN:
- 0277-6715
- Page Range / eLocation ID:
- 4650 to 4666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chiappa, Silvia; Calandra, Roberto (Ed.)Random forests are powerful non-parametric regression method but are severely limited in their usage in the presence of randomly censored observations, and naively applied can exhibit poor predictive performance due to the incurred biases. Based on a local adaptive representation of random forests, we develop its regression adjustment for randomly censored regression quantile models. Regression adjustment is based on a new estimating equation that adapts to censoring and leads to quantile score whenever the data do not exhibit censoring. The proposed procedure named censored quantile regression forest, allows us to estimate quantiles of time-to-event without any parametric modeling assumption. We establish its consistency under mild model specifications. Numerical studies showcase a clear advantage of the proposed procedure.more » « less
-
null (Ed.)Summary We investigate optimal subsampling for quantile regression. We derive the asymptotic distribution of a general subsampling estimator and then derive two versions of optimal subsampling probabilities. One version minimizes the trace of the asymptotic variance-covariance matrix for a linearly transformed parameter estimator and the other minimizes that of the original parameter estimator. The former does not depend on the densities of the responses given covariates and is easy to implement. Algorithms based on optimal subsampling probabilities are proposed and asymptotic distributions, and the asymptotic optimality of the resulting estimators are established. Furthermore, we propose an iterative subsampling procedure based on the optimal subsampling probabilities in the linearly transformed parameter estimation which has great scalability to utilize available computational resources. In addition, this procedure yields standard errors for parameter estimators without estimating the densities of the responses given the covariates. We provide numerical examples based on both simulated and real data to illustrate the proposed method.more » « less
-
For massive survival data, we propose a subsampling algorithm to efficiently approximate the estimates of regression parameters in the additive hazards model. We establish consistency and asymptotic normality of the subsample‐based estimator given the full data. The optimal subsampling probabilities are obtained via minimizing asymptotic variance of the resulting estimator. The subsample‐based procedure can largely reduce the computational cost compared with the full data method. In numerical simulations, our method has low bias and satisfactory coverage probabilities. We provide an illustrative example on the survival analysis of patients with lymphoma cancer from the Surveillance, Epidemiology, and End Results Program.more » « less
-
In this paper, we propose improved estimation method for logistic regression based on subsamples taken according the optimal subsampling probabilities developed in Wang et al. (2018). Both asymptotic results and numerical results show that the new estimator has a higher estimation efficiency. We also develop a new algorithm based on Poisson subsampling, which does not require to approximate the optimal subsampling probabilities all at once. This is computationally advantageous when available random-access memory is not enough to hold the full data. Interestingly, asymptotic distributions also show that Poisson subsampling produces a more efficient estimator if the sampling ratio, the ratio of the subsample size to the full data sample size, does not converge to zero. We also obtain the unconditional asymptotic distribution for the estimator based on Poisson subsampling. Pilot estimators are required to calculate subsampling probabilities and to correct biases in un-weighted estimators; interestingly, even if pilot estimators are inconsistent, the proposed method still produce consistent and asymptotically normal estimators.more » « less
An official website of the United States government

