skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Hongyan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Grapevine (Vitis vinifera) is an economically important fruit crop worldwide. The widely cultivated grapevine is susceptible to powdery mildew caused by Erysiphe necator. In this study, we used CRISPR-Cas9 to simultaneously knock out VviWRKY10 and VviWRKY30 encoding two transcription factors reported to be implicated in defense regulation. We generated 53 wrky10 single mutant transgenic plants and 15 wrky10 wrky30 double mutant transgenic plants. In a 2-yr field evaluation of powdery mildew resistance, the wrky10 mutants showed strong resistance, while the wrky10 wrky30 double mutants showed moderate resistance. Further analyses revealed that salicylic acid (SA) and reactive oxygen species contents in the leaves of wrky10 and wrky10 wrky30 were substantially increased, as was the ethylene (ET) content in the leaves of wrky10. The results from dual luciferase reporter assays, electrophoretic mobility shift assays and chromatin immunoprecipitation (ChIP) assays demonstrated that VviWRKY10 could directly bind to the W-boxes in the promoter of SA-related defense genes and inhibit their transcription, supporting its role as a negative regulator of SA-dependent defense. By contrast, VviWRKY30 could directly bind to the W-boxes in the promoter of ET-related defense genes and promote their transcription, playing a positive role in ET production and ET-dependent defense. Moreover, VviWRKY10 and VviWRKY30 can bind to each other's promoters and mutually inhibit each other's transcription. Taken together, our results reveal a complex mechanism of regulation by VviWRKY10 and VviWRKY30 for activation of measured and balanced defense responses against powdery mildew in grapevine. 
    more » « less
  2. Wittkopp, Patricia (Ed.)
    Abstract Cytonuclear coordination between biparental-nuclear genomes and uniparental-cytoplasmic organellar genomes in plants is often resolved by genetic and transcriptional cytonuclear responses. Whether this mechanism also acts in allopolyploid members of other kingdoms is not clear. Additionally, cytonuclear coordination of interleaved allopolyploid cells/individuals within the same population is underexplored. The yeast Saccharomyces pastorianus provides the opportunity to explore cytonuclear coevolution during different growth stages and from novel dimensions. Using S. pastorianus cells from multiple growth stages in the same environment, we show that nuclear mitochondria-targeted genes have undergone both asymmetric gene conversion and growth stage-specific biased expression favoring genes from the mitochondrial genome donor (Saccharomyces eubayanus). Our results suggest that cytonuclear coordination in allopolyploid lager yeast species entails an orchestrated and compensatory genetic and transcriptional evolutionary regulatory shift. The common as well as unique properties of cytonuclear coordination underlying allopolyploidy between unicellular yeasts and higher plants offers novel insights into mechanisms of cytonuclear evolution associated with allopolyploid speciation. 
    more » « less
  3. Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCo) has long been studied from many perspectives. As a multisubunit (large subunits [LSUs] and small subunits[SSUs]) protein encoded by genes residing in the chloroplast ( rbcL ) and nuclear ( rbcS ) genomes, RuBisCo also is a model for cytonuclear coevolution following allopolyploid speciation in plants. Here, we studied the genomic and transcriptional cytonuclear coordination of auxiliary chaperonin and chaperones that facilitate RuBisCo biogenesis across multiple natural and artificially synthesized plant allopolyploids. We found similar genomic and transcriptional cytonuclear responses, including respective paternal-to-maternal conversions and maternal homeologous biased expression, in chaperonin/chaperon-assisted folding and assembly of RuBisCo in different allopolyploids. One observation is about the temporally attenuated genomic and transcriptional cytonuclear evolutionary responses during early folding and later assembly process of RuBisCo biogenesis, which were established by long-term evolution and immediate onset of allopolyploidy, respectively. Our study not only points to the potential widespread and hitherto unrecognized features of cytonuclear evolution but also bears implications for the structural interaction interface between LSU and Cpn60 chaperonin and the functioning stage of the Raf2 chaperone. 
    more » « less
  4. The successful fabrication of black phosphorene (Black-P) in 2014 and subsequent synthesis of layered black As 1−x P x alloys have inspired research into two-dimensional (2D) binary As–P compounds. The very recent success in growing blue phosphorene (Blue-P) further motivated exploration of 2D Blue-AsP materials. Here, using ab initio swarm-intelligence global minimum structure-searching methods, we have obtained a series of novel and energetically favored 2D Blue-AsP (denoted x-AsP, x = I, II, III, IV, V) compounds with As : P = 1 : 1 stoichiometry. They display similar honeycomb structures to Blue-P. Remarkably, the lowest-energy AsP monolayer, namely I-AsP, not only possesses a quasi-direct band gap (2.41 eV), which can be tuned to a direct and optimal gap for photovoltaic applications by in-plane strain, but also has an ultrahigh electronic mobility up to ∼7.4 × 10 4 cm 2 V −1 s −1 , far surpassing that of Blue-P, and also exhibits high absorption coefficients (×10 5 cm −1 ). Our simulations also show that 30 nm-thick I-AsP sheet-based cells have photovoltaic efficiency as high as ∼12%, and the I-AsP/CdSe heterostructure solar cells possess a power conversion efficiency as high as ∼13%. All these outstanding characteristics suggest the I-AsP sheet as a promising material for high-efficiency solar cells. 
    more » « less