Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available June 1, 2025
-
Existing error-bounded lossy compression techniques control the pointwise error during compression to guarantee the integrity of the decompressed data. However, they typically do not explicitly preserve the topological features in data. When performing post hoc analysis with decompressed data using topological methods, preserving topology in the compression process to obtain topologically consistent and correct scientific insights is desirable. In this paper, we introduce TopoSZ, an error-bounded lossy compression method that preserves the topological features in 2D and 3D scalar fields. Specifically, we aim to preserve the types and locations of local extrema as well as the level set relations among critical points captured by contour trees in the decompressed data. The main idea is to derive topological constraints from contour-tree-induced segmentation from the data domain, and incorporate such constraints with a customized error-controlled quantization strategy from the SZ compressor (version 1.4). Our method allows users to control the pointwise error and the loss of topological features during the compression process with a global error bound and a persistence threshold.more » « less
-
Abstract Atmospheric rivers (ARs) are long, narrow regions of water vapor in the Earth's atmosphere that transport heat and moisture from the tropics to the mid‐latitudes. ARs are often associated with extreme weather events in North America and contribute significantly to water supply and flood risk. However, characterizing ARs has been a major challenge due to the lack of a universal definition and their structural variations. Existing AR detection tools (ARDTs) produce distinct AR boundaries for the same event, making the risk assessment of ARs a difficult task. Understanding these uncertainties is crucial to improving the predictability of AR impacts, including their landfall areas and associated precipitation, which could cause catastrophic flooding and landslides over the coastal regions. In this work, we develop an uncertainty visualization framework that captures boundary and interior uncertainties, i.e., structural variations, of an ensemble of ARs that arise from a set of ARDTs. We first provide a statistical overview of the AR boundaries using the contour boxplots of Whitaker et al. that highlight the structural variations of AR boundaries based on their nesting relationships. We then introduce the topological skeletons of ARs based on Morse complexes that characterize the interior variation of an ensemble of ARs. We propose an uncertainty visualization of these topological skeletons, inspired by MetroSets of Jacobson et al. that emphasizes the agreements and disagreements across the ensemble members. Through case studies and expert feedback, we demonstrate that the two approaches complement each other, and together they could facilitate an effective comparative analysis process and provide a more confident outlook on an AR's shape, area, and onshore impact.more » « less
-
Abstract We present the astrometric calibration of the Beijing–Arizona Sky Survey (BASS). The BASS astrometry was tied to the International Celestial Reference Frame via the Gaia Data Release 2 reference catalog. For effects that were stable throughout the BASS observations, including differential chromatic refraction and the low charge transfer efficiency of the CCD, we corrected for these effects at the raw image coordinates. Fourth-order polynomial intermediate longitudinal and latitudinal corrections were used to remove optical distortions. The comparison with the Gaia catalog shows that the systematic errors, depending on color or magnitude, are less than 2 milliarcseconds (mas). The position systematic error is estimated to be about −0.01 ± 0.7 mas in the region between 30° and 60° of decl. and up to −0.07 ± 0.9 mas in the region north of decl. 60°.more » « less
-
Abstract Accurate soil moisture and streamflow data are an aspirational need of many hydrologically relevant fields. Model simulated soil moisture and streamflow hold promise but models require validation prior to application. Calibration methods are commonly used to improve model fidelity but misrepresentation of the true dynamics remains a challenge. In this study, we leverage soil parameter estimates from the Soil Survey Geographic (SSURGO) database and the probability mapping of SSURGO (POLARIS) to improve the representation of hydrologic processes in the Weather Research and Forecasting Hydrological modeling system (WRF‐Hydro) over a central California domain. Our results show WRF‐Hydro soil moisture exhibits increased correlation coefficients (r), reduced biases, and increased Kling‐Gupta Efficiencies (KGEs) across seven in situ soil moisture observing stations after updating the model's soil parameters according to POLARIS. Compared to four well‐established soil moisture data sets including Soil Moisture Active Passive data and three Phase 2 North American Land Data Assimilation System land surface models, our POLARIS‐adjusted WRF‐Hydro simulations produce the highest mean KGE (0.69) across the seven stations. More importantly, WRF‐Hydro streamflow fidelity also increases, especially in the case where the model domain is set up with SSURGO‐informed total soil thickness. The magnitude and timing of peak flow events are better captured,rincreases across nine United States Geological Survey stream gages, and the mean KGE across seven of the nine gages increases from 0.12 to 0.66. Our pre‐calibration parameter estimate approach, which is transferable to other spatially distributed hydrological models, can substantially improve a model's performance, helping reduce calibration efforts and computational costs.more » « less
-
Abstract. In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the abilityto accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augmentthe Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfiredebris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation andreanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric rivertriggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to thebaseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peakdischarge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located inthe simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchmentswith anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flowobservations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-basedtool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weatherforecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazardforecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments.more » « less