skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Augmentation of WRF-Hydro to simulate overland-flow- and streamflow-generated debris flow susceptibility in burn scars
Abstract. In steep wildfire-burned terrains, intense rainfall can produce large runoff that can trigger highly destructive debris flows. However, the abilityto accurately characterize and forecast debris flow susceptibility in burned terrains using physics-based tools remains limited. Here, we augmentthe Weather Research and Forecasting Hydrological modeling system (WRF-Hydro) to simulate both overland and channelized flows and assess postfiredebris flow susceptibility over a regional domain. We perform hindcast simulations using high-resolution weather-radar-derived precipitation andreanalysis data to drive non-burned baseline and burn scar sensitivity experiments. Our simulations focus on January 2021 when an atmospheric rivertriggered numerous debris flows within a wildfire burn scar in Big Sur – one of which destroyed California's famous Highway 1. Compared to thebaseline, our burn scar simulation yields dramatic increases in total and peak discharge and shorter lags between rainfall onset and peakdischarge, consistent with streamflow observations at nearby US Geological Survey (USGS) streamflow gage sites. For the 404 catchments located inthe simulated burn scar area, median catchment-area-normalized peak discharge increases by ∼ 450 % compared to the baseline. Catchmentswith anomalously high catchment-area-normalized peak discharge correspond well with post-event field-based and remotely sensed debris flowobservations. We suggest that our regional postfire debris flow susceptibility analysis demonstrates WRF-Hydro as a compelling new physics-basedtool whose utility could be further extended via coupling to sediment erosion and transport models and/or ensemble-based operational weatherforecasts. Given the high-fidelity performance of our augmented version of WRF-Hydro, as well as its potential usage in probabilistic hazardforecasts, we argue for its continued development and application in postfire hydrologic and natural hazard assessments.  more » « less
Award ID(s):
1854951 2023112
PAR ID:
10417350
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Natural Hazards and Earth System Sciences
Volume:
22
Issue:
7
ISSN:
1684-9981
Page Range / eLocation ID:
2317 to 2345
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Predicting where runoff‐generated debris flows might occur during rainfall on steep, recently burned terrain is challenging. Studies of mass‐movement processes in unburned areas indicate that event locations are well‐predicted by rainfall anomaly,R*, in which peak observed rainfall is normalized by local rainfall climatology. Here, we use remote and field methods to map debris flows triggered within the 2020 Dolan Fire burn area in coastal California, demonstrate that a short‐durationR*metric predicts debris‐flow occurrence more effectively than absolute peak intensity or longer‐duration rainfall metrics, and show that incorporating anR*criterion into an existing debris‐flow likelihood model can reduce false positive predictions and improve accuracy. We testR* at three other climatically distinct fires in California, demonstrating its utility for mapping likely debris‐flow locations in different climates. We also consider howR*can benefit postfire debris‐flow prediction given recent increases in climatological variability within individual burn perimeters. 
    more » « less
  2. The size, frequency, and geographic scope of severe wildfires are expanding across the globe, including in the Western United States. Recently burned steeplands have an increased likelihood of debris flows, which pose hazards to downstream communities. The conditions for postfire debris‐flow initiation are commonly expressed as rainfall intensity‐duration thresholds, which can be estimated given sufficient observational history. However, the spread of wildfire across diverse climates poses a challenge for accurate threshold prediction in areas with limited observations. Studies of mass‐movement processes in unburned areas indicate that thresholds vary with local climate, such that higher rainfall rates are required for initiation in climates characterized by frequent intense rainfall. Here, we use three independent methods to test whether initiation of postfire runoff‐generated debris flows across the Western United States varies similarly with climate. Through the compilation of observed thresholds at various fires, analysis of the spatial density of observed debris flows, and quantification of feature importance at different spatial scales, we show that postfire debris‐flow initiation thresholds vary systematically with short‐duration rainfall‐intensity climatology. The predictive power of climatological data sets that are readily available before a fire occurs offers a much‐needed tool for hazard management in regions that are facing increased wildfire activity, have sparse observational history, and/or have limited resources for field‐based hazard assessment. Furthermore, if the observed variation in thresholds reflects long‐term adjustment of the landscape to local climate, rapid shifts in rainfall intensity related to climate change will likely induce spatially variable shifts in postfire debris‐flow likelihood. 
    more » « less
  3. Abstract Debris flows pose a significant hazard to communities in mountainous areas, and there is a continued need for methods to delineate hazard zones associated with debris-flow inundation. In certain situations, such as scenarios following wildfire, where there could be an abrupt increase in the likelihood and size of debris flows that necessitates a rapid hazard assessment, the computational demands of inundation models play a role in their utility. The inability to efficiently determine the downstream effects of anticipated debris-flow events remains a critical gap in our ability to understand, mitigate, and assess debris-flow hazards. To better understand the downstream effects of debris flows, we introduce a computationally efficient, reduced-complexity inundation model, which we refer to as the Progressive Debris-Flow routing and inundation model (ProDF). We calibrate ProDF against mapped inundation from five watersheds near Montecito, CA, that produced debris flows shortly after the 2017 Thomas Fire. ProDF reproduced 70% of mapped deposits across a 40 km 2 study area. While this study focuses on a series of post-wildfire debris flows, ProDF is not limited to simulating debris-flow inundation following wildfire and could be applied to any scenario where it is possible to estimate a debris-flow volume. However, given its ability to reproduce mapped debris-flow deposits downstream of the 2017 Thomas Fire burn scar, and the modest run time associated with a simulation over this 40 km 2 study area, results suggest ProDF may be particularly promising for post-wildfire hazard assessment applications. 
    more » « less
  4. This data release contains two debris-flow inventories summarizing observations from burned and unburned areas in the western Cascade Range of Oregon (OR). The burned inventory focuses on debris flows that occurred during the first two years after the 2020 Archie Creek, Holiday Farm, Beachie Creek/Lionshead, and Riverside fires (OR_field_observations.csv). The unburned inventory (1995-2022) focuses on debris flows in the same areas (excluding the Riverside Fire). The inventories are derived from field observations (OR_field_observations.csv) and aerial imagery (OR_imagery_observations.csv). They include mapped debris-flow initiation locations, descriptions of the inferred initiation process, other notable site characteristics, and rainfall data. Locations of debris flows observed after wildfires are also linked to USGS postfire debris-flow hazard assessments (USGS, 2022; Staley and others, 2017; Thomas and others 2023). Rainfall characteristics for each debris flow in the inventory are derived from the closest rainfall gage to an observed debris flow (gage_locations.csv). Peak rainfall rates during the known time window of debris-flow initiation are reported for durations of 15 minutes, 30 minutes, 60 minutes, 12 hours, 24 hours, 36 hours, and 48 hours. More detailed explanations of the headers for each of these csv files can be found within the README_csvname.txt file. References: Landslide Hazards Program. (n.d.). Emergency assessment of post-fire debris-flow hazards. U.S. Geological Survey. https://landslides.usgs.gov/hazards/postfire_debrisflow Staley, D. M., Negri, J. A., Kean, J. W., Laber, J. L., Tillery, A. C., and Youberg, A. M., 2017, Prediction of spatially explicit rainfall intensity–duration thresholds for post-fire debris-flow generation in the western United States. Geomorphology, 278, 149–162. https://doi.org/10.1016/j.geomorph.2016.10.019 Thomas, M. A., Kean, J. W., McCoy, S. W., Lindsay, D. N., Kostelnik, J., Cavagnaro, D. B., Rengers, F. K., East, A. E., Schwartz, J. Y., Smith, D. P., and Collins, B. D., 2023, Postfire hydrologic response along the Central California (USA) coast: insights for the emergency assessment of postfire debris-flow hazards. Landslides, 20, 2421-2436. https://doi.org/10.1007/s10346-023-02106-7 
    more » « less
  5. Streamflow often increases after fire, but the persistence of this effect and its importance to present and future regional water resources are unclear. This paper addresses these knowledge gaps for the western United States (WUS), where annual forest fire area increased by more than 1,100% during 1984 to 2020. Among 72 forested basins across the WUS that burned between 1984 and 2019, the multibasin mean streamflow was significantly elevated by 0.19 SDs ( P < 0.01) for an average of 6 water years postfire, compared to the range of results expected from climate alone. Significance is assessed by comparing prefire and postfire streamflow responses to climate and also to streamflow among 107 control basins that experienced little to no wildfire during the study period. The streamflow response scales with fire extent: among the 29 basins where >20% of forest area burned in a year, streamflow over the first 6 water years postfire increased by a multibasin average of 0.38 SDs, or 30%. Postfire streamflow increases were significant in all four seasons. Historical fire–climate relationships combined with climate model projections suggest that 2021 to 2050 will see repeated years when climate is more fire-conducive than in 2020, the year currently holding the modern record for WUS forest area burned. These findings center on relatively small, minimally managed basins, but our results suggest that burned areas will grow enough over the next 3 decades to enhance streamflow at regional scales. Wildfire is an emerging driver of runoff change that will increasingly alter climate impacts on water supplies and runoff-related risks. 
    more » « less