skip to main content

Search for: All records

Creators/Authors contains: "Wang, Jiawei"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2022
  2. Abstract CRISPR–Cas is an anti-viral mechanism of prokaryotes that has been widely adopted for genome editing. To make CRISPR–Cas genome editing more controllable and safer to use, anti-CRISPR proteins have been recently exploited to prevent excessive/prolonged Cas nuclease cleavage. Anti-CRISPR (Acr) proteins are encoded by (pro)phages/(pro)viruses, and have the ability to inhibit their host's CRISPR–Cas systems. We have built an online database AcrDB ( by scanning ∼19 000 genomes of prokaryotes and viruses with AcrFinder, a recently developed Acr-Aca (Acr-associated regulator) operon prediction program. Proteins in Acr-Aca operons were further processed by two machine learning-based programs (AcRanker and PaCRISPR) tomore »obtain numerical scores/ranks. Compared to other anti-CRISPR databases, AcrDB has the following unique features: (i) It is a genome-scale database with the largest collection of data (39 799 Acr-Aca operons containing Aca or Acr homologs); (ii) It offers a user-friendly web interface with various functions for browsing, graphically viewing, searching, and batch downloading Acr-Aca operons; (iii) It focuses on the genomic context of Acr and Aca candidates instead of individual Acr protein family and (iv) It collects data with three independent programs each having a unique data mining algorithm for cross validation. AcrDB will be a valuable resource to the anti-CRISPR research community.« less
  3. The coadsorption of Hg0 and SO3 on pure and Cu/Mn doped CeO2(110) surfaces were investigated using the Density Functional Theory (DFT) method. A p (2 × 2) supercell periodic slab model with seven atomic layers was constructed to represent the CeO2(110) surface. The results indicated that Hg0 physically adsorbed on the CeO2(110) surface, while Hg0 chemically adsorbed on the Cu/Mn doped CeO2(110) surface, which agree well with the experimental results that Cu and Mn doped CeO2 greatly improved the Hg0 adsorption capacity of the adsorbent. The calculated results suggested that SO3 more easily adsorbs on the above three surfaces thanmore »Hg0 due to the higher adsorption energy. The adsorption configurations and electronic structures indicated SO3 reacted with O atoms of the surface to form SO42− species. Hence, SO3 inhibits Hg0 adsorption on the CeO2(110) surface by competing with Hg0 for surface lattice oxygen. In addition, SO3 decreased the activity of the surface O atoms, which directly caused the negative effect on Hg0 adsorption.« less
  4. Abstract The semiconductor tracker (SCT) is one of the tracking systems for charged particles in the ATLAS detector. It consists of 4088 silicon strip sensor modules.During Run 2 (2015–2018) the Large Hadron Collider delivered an integrated luminosity of 156 fb -1 to the ATLAS experiment at a centre-of-mass proton-proton collision energy of 13 TeV. The instantaneous luminosity and pile-up conditions were far in excess of those assumed in the original design of the SCT detector.Due to improvements to the data acquisition system, the SCT operated stably throughout Run 2.It was available for 99.9% of the integrated luminosity and achieved a data-quality efficiencymore »of 99.85%.Detailed studies have been made of the leakage current in SCT modules and the evolution of the full depletion voltage, which are used to study the impact of radiation damage to the modules.« less
    Free, publicly-accessible full text available January 1, 2023