skip to main content

Title: Visible light photonic integrated Brillouin laser
Abstract Narrow linewidth visible light lasers are critical for atomic, molecular and optical (AMO) physics including atomic clocks, quantum computing, atomic and molecular spectroscopy, and sensing. Stimulated Brillouin scattering (SBS) is a promising approach to realize highly coherent on-chip visible light laser emission. Here we report demonstration of a visible light photonic integrated Brillouin laser, with emission at 674 nm, a 14.7 mW optical threshold, corresponding to a threshold density of 4.92 mW μm −2 , and a 269 Hz linewidth. Significant advances in visible light silicon nitride/silica all-waveguide resonators are achieved to overcome barriers to SBS in the visible, including 1 dB/meter waveguide losses, 55.4 million quality factor (Q), and measurement of the 25.110 GHz Stokes frequency shift and 290 MHz gain bandwidth. This advancement in integrated ultra-narrow linewidth visible wavelength SBS lasers opens the door to compact quantum and atomic systems and implementation of increasingly complex AMO based physics and experiments.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The integration of stabilized lasers, sources that generate spectrally pure light, will provide compact, low-cost solutions for applications including quantum information sciences, precision navigation and timing, metrology, and high-capacity fiber communications. We report a significant advancement in this field, demonstrating stabilization of an integrated waveguide Brillouin laser to an integrated waveguide reference cavity, where both resonators are fabricated using the same CMOS-compatible integration platform. We demonstrate reduction of the free running Brillouin laser linewidth to a 292 Hz integral linewidth and carrier stabilization to a 4.9 × 10 −13 fractional frequency at 8 ms reaching the cavity-intrinsic thermorefractive noise limit for frequencies down to 80 Hz. We achieve this level of performance using a pair of 56.4 × 10 6 quality factor Si 3 N 4 waveguide ring-resonators that reduce the high-frequency noise by the nonlinear Brillouin process and the low-frequency noise by Pound–Drever–Hall locking to the ultra-low loss resonator. These results represent an important step toward integrated stabilized lasers with reduced sensitivity to environmental disturbances for atomic, molecular, and optical physics (AMO), quantum information processing and sensing, and other precision scientific, sensing, and communications applications. 
    more » « less
  2. Modulation-based control and locking of lasers, filters and other photonic components is a ubiquitous function across many applications that span the visible to infrared (IR), including atomic, molecular and optical (AMO), quantum sciences, fiber communications, metrology, and microwave photonics. Today, modulators used to realize these control functions consist of high-power bulk-optic components for tuning, sideband modulation, and phase and frequency shifting, while providing low optical insertion loss and operation from DC to 10s of MHz. In order to reduce the size, weight and cost of these applications and improve their scalability and reliability, modulation control functions need to be implemented in a low loss, wafer-scale CMOS-compatible photonic integration platform. The silicon nitride integration platform has been successful at realizing extremely low waveguide losses across the visible to infrared and components including high performance lasers, filters, resonators, stabilization cavities, and optical frequency combs. Yet, progress towards implementing low loss, low power modulators in the silicon nitride platform, while maintaining wafer-scale process compatibility has been limited. Here we report a significant advance in integration of a piezo-electric (PZT, lead zirconate titanate) actuated micro-ring modulation in a fully-planar, wafer-scale silicon nitride platform, that maintains low optical loss (0.03 dB/cm in a 625 µm resonator) at 1550 nm, with an order of magnitude increase in bandwidth (DC - 15 MHz 3-dB and DC - 25 MHz 6-dB) and order of magnitude lower power consumption of 20 nW improvement over prior PZT modulators. The modulator provides a >14 dB extinction ratio (ER) and 7.1 million quality-factor (Q) over the entire 4 GHz tuning range, a tuning efficiency of 162 MHz/V, and delivers the linearity required for control applications with 65.1 dB·Hz2/3and 73.8 dB·Hz2/3third-order intermodulation distortion (IMD3) spurious free dynamic range (SFDR) at 1 MHz and 10 MHz respectively. We demonstrate two control applications, laser stabilization in a Pound-Drever Hall (PDH) lock loop, reducing laser frequency noise by 40 dB, and as a laser carrier tracking filter. This PZT modulator design can be extended to the visible in the ultra-low loss silicon nitride platform with minor waveguide design changes. This integration of PZT modulation in the ultra-low loss silicon nitride waveguide platform enables modulator control functions in a wide range of visible to IR applications such as atomic and molecular transition locking for cooling, trapping and probing, controllable optical frequency combs, low-power external cavity tunable lasers, quantum computers, sensors and communications, atomic clocks, and tunable ultra-low linewidth lasers and ultra-low phase noise microwave synthesizers.

    more » « less
  3. Over the past few decades, rapid development of laser cooling techniques and narrow-linewidth lasers have allowed atom-based quantum clocks to achieve unprecedented precision. Techniques originally developed for atomic clocks can be extended to ultracold molecules, with applications ranging from quantum-state-controlled ultracold chemistry to searches for new physics. Because of the richness of molecular structure, quantum metrology based on molecules provides possibilities for testing physics that is beyond the scope of traditional atomic clocks. This thesis presents the work performed to establish a state-of-the-art quantum clock based on ultracold molecules. The molecular clock is based on a frequency difference between two vibrational levels in the electronic ground state of 88Sr2 diatomic molecules. Such a clock allows us test molecular QED, improve constraints on nanometer-scale gravity, and potentially provide a model-independent test of temporal variations of the proton-electron mass ratio. Trap-insensitive spectroscopy is crucial for extending coherent molecule-light interactions and achieving a high quality factor Q. We have demonstrated a magic wavelength technique for molecules by manipulating the optical lattice frequency near narrow polarizability resonances. This general technique allows us to increase the coherence time to tens of ms, an improvement of a factor of several thousand, and to narrow the linewidth of a 25 THz vibrational transition initially to 30 Hz. This width corresponds to the quality factor Q = 8 × 10^11. Besides the molecular quantum metrology, investigations of novel phenomena in state-selected photodissociation are also described in this thesis, including magnetic-field control of photodissociation and observation of the crossover from ultracold to quasiclassical chemistry. 
    more » « less
  4. Photonic molecules can realize complex optical energy modes that simulate states of matter and have application to quantum, linear, and nonlinear optical systems. To achieve their full potential, it is critical to scale the photonic molecule energy state complexity and provide flexible, controllable, stable, high-resolution energy state engineering with low power tuning mechanisms. In this work, we demonstrate a controllable, silicon nitride integrated photonic molecule, with three high-quality factor ring resonators strongly coupled to each other and individually actuated using ultralow-power thin-film lead zirconate titanate (PZT) tuning. The resulting six tunable supermodes can be fully controlled, including their degeneracy, location, and degree of splitting, and the PZT actuator design yields narrow PM energy state linewidths below 58 MHz without degradation as the resonance shifts, with over an order of magnitude improvement in resonance splitting-to-width ratio of 58, and power consumption of 90 nW per actuator, with a 1-dB photonic molecule loss. The strongly coupled PZT-controlled resonator design provides a high-degree of resolution and controllability in accessing the supermodes. Given the low loss of the silicon nitride platform from the visible to infrared and the three individual bus, six-port design, these results open the door to novel device designs and a wide range of applications including tunable lasers, high-order suppression ultranarrow-linewidth lasers, dispersion engineering, optical parametric oscillators, physics simulations, and atomic and quantum photonics.

    more » « less
  5. Advances in laser technology have driven discoveries in atomic, molecular, and optical (AMO) physics and emerging applications, from quantum computers with cold atoms or ions, to quantum networks with solid-state color centers. This progress is motivating the development of a new generation of optical control systems that can manipulate the light field with high fidelity at wavelengths relevant for AMO applications. These systems are characterized by criteria: (C1) operation at a design wavelength of choice in the visible (VIS) or near-infrared (IR) spectrum, (C2) a scalable platform that can support large channel counts, (C3) high-intensity modulation extinction and (C4) repeatability compatible with low gate errors, and (C5) fast switching times. Here, we provide a pathway to address these challenges by introducing an atom control architecture based on VIS-IR photonic integrated circuit (PIC) technology. Based on a complementary metal–oxide–semiconductor fabrication process, this atom-control PIC (APIC) technology can meet system requirements (C1)–(C5). As a proof of concept, we demonstrate a 16-channel silicon-nitride-based APIC with (5.8±0.4)ns response times and >30dB extinction ratio at a wavelength of 780 nm.

    more » « less