- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0000000005000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Wang, Jiuya (5)
-
Anderson, Theresa C (2)
-
Gafni, Ayla (2)
-
Hughes, Kevin (2)
-
Lemke_Oliver, Robert J (2)
-
Lowry-Duda, David (2)
-
Thorne, Frank (2)
-
Zhang, Ruixiang (2)
-
Carneiro, Emanuel (1)
-
Das, Mithun Kumar (1)
-
Florea, Alexandra (1)
-
Klüners, Jürgen (1)
-
Kumchev, Angel V. (1)
-
Lam, Yeuk Hay (1)
-
Liu, Yuan (1)
-
Malik, Amita (1)
-
Milinovich, Micah B. (1)
-
Sharifi, Romyar (1)
-
Turnage-Butterbaugh, Caroline (1)
-
Wake, Preston (1)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Anderson, Theresa C; Gafni, Ayla; Hughes, Kevin; Lemke_Oliver, Robert J; Lowry-Duda, David; Thorne, Frank; Wang, Jiuya; Zhang, Ruixiang (, Discrete analysis)
-
Klüners, Jürgen; Wang, Jiuya (, La Matematica)
-
Lam, Yeuk Hay; Liu, Yuan; Sharifi, Romyar; Wake, Preston; Wang, Jiuya (, Forum of Mathematics, Sigma)Abstract Given a profinite group G of finite p -cohomological dimension and a pro- p quotient H of G by a closed normal subgroup N , we study the filtration on the Iwasawa cohomology of N by powers of the augmentation ideal in the group algebra of H . We show that the graded pieces are related to the cohomology of G via analogues of Bockstein maps for the powers of the augmentation ideal. For certain groups H , we relate the values of these generalized Bockstein maps to Massey products relative to a restricted class of defining systems depending on H . We apply our study to prove lower bounds on the p -ranks of class groups of certain nonabelian extensions of $$\mathbb {Q}$$ and to give a new proof of the vanishing of Massey triple products in Galois cohomology.more » « less
-
Carneiro, Emanuel; Das, Mithun Kumar; Florea, Alexandra; Kumchev, Angel V.; Malik, Amita; Milinovich, Micah B.; Turnage-Butterbaugh, Caroline; Wang, Jiuya (, Journal of Functional Analysis)null (Ed.)
An official website of the United States government

Full Text Available