Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 14, 2026
-
Many viruses undergo transient conformational change to surveil their environments for receptors and host factors. In Hepatitis B virus (HBV) infection, after the virus enters the cell, it is transported to the nucleus by interaction of the HBV capsid with an importin α/β complex. The interaction between virus and importins is mediated by nuclear localization signals on the capsid protein’s C-terminal domain (CTD). However, CTDs are located inside the capsid. In this study, we asked where does a CTD exit the capsid, are all quasi-equivalent CTDs created equal, and does the capsid structure deform to facilitate CTD egress from the capsid? Here, we used Impβ as a tool to trap transiently exposed CTDs and examined this complex by cryo-electron microscopy. We examined an asymmetric reconstruction of a T = 4 icosahedral capsid and a focused reconstruction of a quasi-6-fold vertex (3.8 and 4.0 Å resolution, respectively). Both approaches showed that a subset of CTDs extended through a pore in the center of the quasi-6-fold complex. CTD egress was accompanied by enlargement of the pore and subtle changes in quaternary and tertiary structure of the quasi-6-fold. When compared to molecular dynamics simulations, structural changes were within the normal range of capsid flexibility. Although pore diameter was enlarged in the Impβ-bound reconstruction, simulations indicate that CTD egress does not exclusively depend on enlarged pores. In summary, we find that HBV surveillance of its environment by transient exposure of its CTD requires only modest conformational change of the capsid.more » « less
-
BackgroundFrequent sensor-assisted monitoring of changes in swallowing function may help improve detection of radiation-associated dysphagia before it becomes permanent. While our group has prototyped an epidermal strain/surface electromyography sensor that can detect minute changes in swallowing muscle movement, it is unknown whether patients with head and neck cancer would be willing to wear such a device at home after radiation for several months. ObjectiveWe iteratively assessed patients’ design preferences and perceived barriers to long-term use of the prototype sensor. MethodsIn study 1 (questionnaire only), survivors of pharyngeal cancer who were 3-5 years post treatment and part of a larger prospective study were asked their design preferences for a hypothetical throat sensor and rated their willingness to use the sensor at home during the first year after radiation. In studies 2 and 3 (iterative user testing), patients with and survivors of head and neck cancer attending visits at MD Anderson’s Head and Neck Cancer Center were recruited for two rounds of on-throat testing with prototype sensors while completing a series of swallowing tasks. Afterward, participants were asked about their willingness to use the sensor during the first year post radiation. In study 2, patients also rated the sensor’s ease of use and comfort, whereas in study 3, preferences were elicited regarding haptic feedback. ResultsThe majority of respondents in study 1 (116/138, 84%) were willing to wear the sensor 9 months after radiation, and participant willingness rates were similar in studies 2 (10/14, 71.4%) and 3 (12/14, 85.7%). The most prevalent reasons for participants’ unwillingness to wear the sensor were 9 months being excessive, unwanted increase in responsibility, and feeling self-conscious. Across all three studies, the sensor’s ability to detect developing dysphagia increased willingness the most compared to its appearance and ability to increase adherence to preventive speech pathology exercises. Direct haptic signaling was also rated highly, especially to indicate correct sensor placement and swallowing exercise performance. ConclusionsPatients and survivors were receptive to the idea of wearing a personalized risk sensor for an extended period during the first year after radiation, although this may have been limited to well-educated non-Hispanic participants. A significant minority of patients expressed concern with various aspects of the sensor’s burden and its appearance. Trial RegistrationClinicalTrials.gov NCT03010150; https://clinicaltrials.gov/study/NCT03010150more » « less
-
Abstract Large constellations of small satellites will significantly increase the number of objects orbiting the Earth. Satellites burn up at the end of service life during reentry, generating aluminum oxides as the main byproduct. These are known catalysts for chlorine activation that depletes ozone in the stratosphere. We present the first atomic‐scale molecular dynamics simulation study to resolve the oxidation process of the satellite's aluminum structure during mesospheric reentry, and investigate the ozone depletion potential from aluminum oxides. We find that the demise of a typical 250‐kg satellite can generate around 30 kg of aluminum oxide nanoparticles, which may endure for decades in the atmosphere. Aluminum oxide compounds generated by the entire population of satellites reentering the atmosphere in 2022 are estimated at around 17 metric tons. Reentry scenarios involving mega‐constellations point to over 360 metric tons of aluminum oxide compounds per year, which can lead to significant ozone depletion.more » « less
An official website of the United States government
