Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available December 1, 2023
-
The persistence of the global COVID-19 pandemic caused by the SARS-CoV-2 virus has continued to emphasize the need for point-of-care (POC) diagnostic tests for viral diagnosis. The most widely used tests, lateral flow assays used in rapid antigen tests, and reverse-transcriptase real-time polymerase chain reaction (RT-PCR), have been instrumental in mitigating the impact of new waves of the pandemic, but fail to provide both sensitive and rapid readout to patients. Here, we present a portable lens-free imaging system coupled with a particle agglutination assay as a novel biosensor for SARS-CoV-2. This sensor images and quantifies individual microbeads undergoing agglutination through a combination of computational imaging and deep learning as a way to detect levels of SARS-CoV-2 in a complex sample. SARS-CoV-2 pseudovirus in solution is incubated with acetyl cholinesterase 2 (ACE2)-functionalized microbeads then loaded into an inexpensive imaging chip. The sample is imaged in a portable in-line lens-free holographic microscope and an image is reconstructed from a pixel superresolved hologram. Images are analyzed by a deep-learning algorithm that distinguishes microbead agglutination from cell debris and viral particle aggregates, and agglutination is quantified based on the network output. We propose an assay procedure using two images which results in the accuratemore »Free, publicly-accessible full text available August 24, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Free, publicly-accessible full text available May 1, 2023
-
Abstract A novel method is developed for reusing the waste glass fiber-reinforced polymer (GFRP) powder as a precursor in geopolymer production. Several activation parameters that affect the workability and strength gain of GFRP powder-based geopolymers are investigated. The results of an experimental study reveal that the early strength of GFRP powder-based geopolymer pastes develops slowly at ambient temperature. The highest compressive strength of GFRP powder-based geopolymer pastes is 7.13 MPa at an age of 28 days. The ratio of compressive strength to flexural strength of GFRP powder-based-geopolymers is lower than that of fly ash and ground granulated blast furnace slag (GGBS)-based geopolymers, indicating that the incorporation of GFRP powder can improve the geopolymer brittleness. GGBS is incorporated into geopolymer blends to accelerate the early activity of GFRP powder. The binary geopolymer pastes exhibit shorter setting times and higher mechanical strength values than those of single GFRP powder geopolymer pastes. The GGBS geopolymer concrete mixture with 30 wt% GFRP powder displayed the highest compressive strength and flexural strength values and was less brittle. The developed binary GFRP powder/GGBS-based geopolymers reduce the disadvantages of single GFRP powder or GGBS geopolymers, and thus, offer high potential as a building construction material.
-
Sweedler, J. V. (Ed.)Viroporins are small viral ion channels that play important roles in the viral infection cycle and are proven antiviral drug targets. Matrix protein 2 from influenza A (AM2) is the best-characterized viroporin, and the current paradigm is that AM2 forms monodisperse tetramers. Here, we used native mass spectrometry and other techniques to characterize the oligomeric state of both the full-length and transmembrane (TM) domain of AM2 in a variety of different pH and detergent conditions. Unexpectedly, we discovered that AM2 formed a range of different oligomeric complexes that were strongly influenced by the local chemical environment. Native mass spectrometry of AM2 in nanodiscs with different lipids showed that lipids also affected the oligomeric states of AM2. Finally, nanodiscs uniquely enabled the measurement of amantadine binding stoichiometries to AM2 in the intact lipid bilayer. These unexpected results reveal that AM2 can form a wider range of oligomeric states than previously thought possible, which may provide new potential mechanisms of influenza pathology and pharmacology.