Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Measuring the distance of quasar outflows from the central source (R) is essential for determining their importance for active galactic nucleus feedback. There are two methods to measureR: (1) a direct determination using spatially resolved integral field spectroscopy (IFS) of the outflow in emission and (2) an indirect method that uses the absorption troughs from ionic excited states. The column density ratio between the excited and resonance states yields the outflow number density. Combined with a knowledge of the outflow’s ionization parameter,Rcan be determined. Generally, the IFS method probes anRrange of several kiloparsecs or more, while the absorption method usually yieldsRvalues of less than 1 kpc. There is no inconsistency between the two methods as the determinations come from different objects. Here we report the results of applying both methods to the same quasar outflow, where we derive consistent determinations ofR≈ 5 kpc. This is the first time that the indirect absorptionRdetermination is verified by a direct spatially resolved IFS observation. In addition, the velocities (and energetics) from the IFS and absorption data are found to be consistent. Therefore, these are two manifestations of the same outflow. In this paper we concentrate on the absorptionRdetermination for the outflow seen in quasar 3C 191 using Very Large Telescope/X-shooter observations. We also reanalyze an older absorption determination for the outflow based on Keck/High Resolution Echelle Spectrometer data and find the revised measurement to be consistent with ours. Our companion paper details the IFS analysis of the same object.more » « lessFree, publicly-accessible full text available April 3, 2026
-
In this study, an Unsteady Reynolds-Averaged Navier-Stokes (URANS) model is demonstrated its suitability for studying the flow and performance of open marine propellers and waterjet pumps. First, the accuracy of the URANS model is validated by studying turbulent flow past counter-rotating propellers (CRPs). Specifically, experimental data from Miller (1976) is employed for comparison against the URANS results. Subsequently, URANS is used to study the flow and performance of an Office of Naval Research (ONR) axial flow waterjet pump (AxWJ-2). Due to the large number of degrees of freedom for both simulations, parallel computations over 80 cores are performed. For the CRP study, torque and thrust coefficients are assessed against a range of advance ratios, ensuring a Reynolds number of less than 600,000. For the waterjet, torque and head coefficients are computed for a range of flow rates at a Reynolds number of 1.25 million. For both studies, two levels of mesh resolution are utilized. The finer meshes of both studies contained roughly four times the total number of cells employed in their respective coarser counterparts. These refinements lead to minor improvements, suggesting good grid resolutions with the coarser grids. Across all advance ratios for the CRP set, the URANS torque and thrust coefficients show good agreement with experimental results, remaining within 10% difference. The torque and head coefficients for the waterjet displayed even better agreement, with the greatest error across all flow conditions remaining under 3%. Moreover, URANS studies revealed that the stator is responsible for 20% of the waterjet’s power production.more » « lessFree, publicly-accessible full text available September 1, 2025
-
The compound 2-(((trifluoromethyl)sulfonyl)oxy)propane-1,3-diyl bis(4-methylben-zenesulfonate) (TPB) is a crucial intermediate in the synthesis of 18F radiolabeled cromolyn derivatives. In this work, we combine 1H NMR spectroscopy, X-ray crystallography, ab initio molecular dynamics and NMR calculations to examine the structure, interactions and solvation dynamics of the TPB molecule. In CDCl3, the -CH2 groups within its glyceryl-derived linker exhibit a single set of proton signals in the 1H NMR measurements. However, when TPB is dissolved in DMSO-d6, distinct splitting patterns emerge despite its seemingly symmetric chemical structure. Crystallographic analysis further unveils the absence of overall symmetry in its three-dimensional arrangement. To elucidate these unique NMR features, we carry out ab initio molecular dynamics simulations and characterize the solvation structures and dynamics of TPB in CHCl3 and DMSO solutions. In contrast to the predominantly non-polar nature of the CHCl3 solvents, DMSO directly participates in C-H···O hydrogen bonding interactions with the solute molecule, leading to the splitting of its -CH2 chemical shifts into two distinct distributions. The comprehensive understanding of the structure and solvation interactions of TPB provides essential insights for its application in the radiofluorination reactions of cromolyn derivatives and holds promise for the future development of radiolabeled dimeric drugs.more » « less
-
Abstract Spin-orbit coupling is an important ingredient to regulate the many-body physics, especially for many spin liquid candidate materials such as rare-earth magnets and Kitaev materials. The rare-earth chalcogenides Equation missing<#comment/>(Ch = O, S, Se) is a congenital frustrating system to exhibit the intrinsic landmark of spin liquid by eliminating both the site disorders between Equation missing<#comment/>and Equation missing<#comment/>ions with the big ionic size difference and the Dzyaloshinskii-Moriya interaction with the perfect triangular lattice of the Equation missing<#comment/>ions. The temperature versus magnetic-field phase diagram is established by the magnetization, specific heat, and neutron-scattering measurements. Notably, the neutron diffraction spectra and the magnetization curve might provide microscopic evidence for a series of spin configuration for in-plane fields, which include the disordered spin liquid state, 120° antiferromagnet, and one-half magnetization state. Furthermore, the ground state is suggested to be a gapless spin liquid from inelastic neutron scattering, and the magnetic field adjusts the spin orbit coupling. Therefore, the strong spin-orbit coupling in the frustrated quantum magnet substantially enriches low-energy spin physics. This rare-earth family could offer a good platform for exploring the quantum spin liquid ground state and quantum magnetic transitions.more » « less