Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In the burgeoning field of spintronics, antiferromagnetic materials (AFMs) are attracting significant attention for their potential to enable ultra‐fast, energy‐efficient devices. Thin films of AFMs are particularly promising for practical applications due to their compatibility with spin‐orbit torque (SOT) mechanisms. However, studying these thin films presents challenges, primarily due to the weak signals they produce and the rapid dynamics driven by SOT, that are too fast for conventional electric transport or microwave techniques to capture. The time‐resolved magneto‐optical Kerr effect (TR‐MOKE) has been a successful tool for probing antiferromagnetic dynamics in bulk materials, thanks to its sub‐picosecond (sub‐ps) time resolution. Yet, its application to nanometer‐scale thin films has been limited by the difficulty of detecting weak signals in such small volumes. In this study, the first successful observation of antiferromagnetic dynamics are presented in nanometer‐thick orthoferrite films using the pump‐probe technique to detect TR‐MOKE signal. This paper report an exceptionally low damping constant of 1.5 × 10−4and confirms the AFM magnonic nature of these dynamics through angular‐dependent measurements. Furthermore, it is observed that electrical currents can potentially modulate these dynamics via SOT. The findings lay the groundwork for developing tunable, energy‐efficient spintronic devices, paving the way for advancements in next‐generation spintronic applications.more » « less
-
Topological insulator (TI) based heterostructure is a prospective candidate for ultrahigh spin-to-charge conversion efficiency due to its unique surface states. We investigate the spin-to-charge conversion in (Bi,Sb)2Te3 (BST)/CoFeB, BST/Ru/CoFeB, and BST/Ti/CoFeB by spin pumping measurement. We find that the inverse Edelstein effect length (λIEE) increases by 60% with a Ru insertion while remains constant with a Ti insertion. This can be potentially explained by the protection of BST surface states due to the high electronegativity of Ru. Such enhancement is independent of the insertion layer thickness once the thickness of Ru is larger than 0.5 nm, and this result suggests that λIEE is very sensitive to the TI interface. In addition, an effectively perpendicular magnetic anisotropy field and additional magnetic damping are observed in the BST/CoFeB sample, which comes from the interfacial spin–orbit coupling between the BST and the CoFeB. Our work provides a method to enhance λIEE and is useful for the understanding of charge-to-spin conversion in TI-based systems.more » « less
-
The Weyl antiferromagnet Mn3Sn has recently attracted significant attention as it is not only a novel magnetic quantum material of fundamental interest, but it also opens opportunities to investigate a number of exotic spin-dependent transports for practical antiferromagnetic devices. Here, we report the large spin to charge conversion observed in YIG/Mn3Sn. Evidenced by both spin Seebeck and spin pumping measurements, the spin to charge conversion efficiency of Mn3Sn is found ∼2.5 times of that for the conventional heavy metal Ta. Our results suggest a promising potential for employing a topological non-trivial antiferromagnet to achieve more efficient spin to charge conversion than conventional metallic materials.more » « less
-
Neuromorphic computing has recently emerged as a promising paradigm to overcome the von-Neumann bottleneck and enable orders of magnitude improvement in bandwidth and energy efficiency. However, existing complementary metal-oxide-semiconductor (CMOS) digital devices, the building block of our computing system, are fundamentally different from the analog synapses, the building block of the biological neural network—rendering the hardware implementation of the artificial neural networks (ANNs) not scalable in terms of area and power, with existing CMOS devices. In addition, the spatiotemporal dynamic, a crucial component for cognitive functions in the neural network, has been difficult to replicate with CMOS devices. Here, we present the first topological insulator (TI) based electrochemical synapse with programmable spatiotemporal dynamics, where long-term and short-term plasticity in the TI synapse are achieved through the charge transfer doping and ionic gating effects, respectively. We also demonstrate basic neuronal functions such as potentiation/depression and paired-pulse facilitation with high precision (>500 states per device), as well as a linear and symmetric weight update. We envision that the dynamic TI synapse, which shows promising scaling potential in terms of energy and speed, can lead to the hardware acceleration of truly neurorealistic ANNs with superior cognitive capabilities and excellent energy efficiency.more » « less
-
Abstract Topological insulators (TI) and magnetic topological insulators (MTI) can apply highly efficient spin‐orbit torque (SOT) and manipulate the magnetization with their unique topological surface states (TSS) with ultrahigh efficiency. Here, efficient SOT switching of a hard MTI, V‐doped (Bi,Sb)2Te3(VBST), with a large coercive field that can prevent the influence of an external magnetic field, is demonstrated. A giant switched anomalous Hall resistance of 9.2 kΩ is realized, among the largest of all SOT systems, which makes the Hall channel a good readout and eliminates the need to fabricate complicated magnetic tunnel junction (MTJ) structures. The SOT switching current density can be reduced to 2.8 × 105 A cm−2, indicating its high efficiency. Moreover, as the Fermi level is moved away from the Dirac point by both gate and composition tuning, VBST exhibits a transition from edge‐state‐mediated to surface‐state‐mediated transport, thus enhancing the SOT effective field to (1.56 ± 0.12) × 10−6 T A−1 cm2and the interfacial charge‐to‐spin conversion efficiency to 3.9 ± 0.3 nm−1. The findings establish VBST as an extraordinary candidate for energy‐efficient magnetic memory devices.more » « less
-
Abstract Quantum anomalous Hall phases arising from the inverted band topology in magnetically doped topological insulators have emerged as an important subject of research for quantization at zero magnetic fields. Though necessary for practical implementation, sophisticated electrical control of molecular beam epitaxy (MBE)‐grown quantum anomalous Hall matter have been stymied by growth and fabrication challenges. Here, a novel procedure is demonstrated, employing a combination of thin‐film deposition and 2D material stacking techniques, to create dual‐gated devices of the MBE‐grown quantum anomalous Hall insulator, Cr‐doped (Bi,Sb)2Te3. In these devices, orthogonal control over the field‐induced charge density and the electric displacement field is demonstrated. A thorough examination of material responses to tuning along each control axis is presented, realizing magnetic property control along the former and a novel capability to manipulate the surface exchange gap along the latter. Through electrically addressing the exchange gap, the capabilities to either strengthen the quantum anomalous Hall state or suppress it entirely and drive a topological phase transition to a trivial state are demonstrated. The experimental result is explained using first principle theoretical calculations, and establishes a practical route for in situ control of quantum anomalous Hall states and topology.more » « less
-
Abstract The quantum anomalous Hall (QAH) effect is characterized by a dissipationless chiral edge state with a quantized Hall resistance at zero magnetic field. Manipulating the QAH state is of great importance in both the understanding of topological quantum physics and the implementation of dissipationless electronics. Here, the QAH effect is realized in the magnetic topological insulator Cr‐doped (Bi,Sb)2Te3(CBST) grown on an uncompensated antiferromagnetic insulator Al‐doped Cr2O3. Through polarized neutron reflectometry (PNR), a strong exchange coupling is found between CBST and Al‐Cr2O3surface spins fixing interfacial magnetic moments perpendicular to the film plane. The interfacial coupling results in an exchange‐biased QAH effect. This study further demonstrates that the magnitude and sign of the exchange bias can be effectively controlled using a field training process to set the magnetization of the Al‐Cr2O3layer. It demonstrates the use of the exchange bias effect to effectively manipulate the QAH state, opening new possibilities in QAH‐based spintronics.more » « less
-
Abstract Magnetic skyrmions are topologically nontrivial chiral spin textures that have potential applications in next‐generation energy‐efficient and high‐density spintronic devices. In general, the chiral spins of skyrmions are stabilized by the noncollinear Dzyaloshinskii–Moriya interaction (DMI), originating from the inversion symmetry breaking combined with the strong spin–orbit coupling (SOC). Here, the strong SOC from topological insulators (TIs) is utilized to provide a large interfacial DMI in TI/ferrimagnet heterostructures at room temperature, resulting in small‐size (radius ≈ 100 nm) skyrmions in the adjacent ferrimagnet. Antiferromagnetically coupled skyrmion sublattices are observed in the ferrimagnet by element‐resolved scanning transmission X‐ray microscopy, showing the potential of a vanishing skyrmion Hall effect and ultrafast skyrmion dynamics. The line‐scan spin profile of the single skyrmion shows a Néel‐type domain wall structure and a 120 nm size of the 180° domain wall. This work demonstrates the sizable DMI and small skyrmions in TI‐based heterostructures with great promise for low‐energy spintronic devices.more » « less
An official website of the United States government
