skip to main content


Search for: All records

Creators/Authors contains: "Wang, Maoyu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Despite the various strategies for achieving metal–nitrogen–carbon (M–N–C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO 2 RR), the synthesis–structure–performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N 3 , while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N 2 . Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp 2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N 3 sites exhibit a superior CO 2 RR performance compared to that with Ni-N 2 and Ni-N 4 ones. 
    more » « less
    Free, publicly-accessible full text available April 4, 2024
  3. Electrochemical energy systems such as batteries, water electrolyzers, and fuel cells are considered as promising and sustainable energy storage and conversion devices due to their high energy densities and zero or negative carbon dioxide emission. However, their widespread applications are hindered by many technical challenges, such as the low efficiency and poor long-term cyclability, which are mostly affected by the changes at the reactant/electrode/electrolyte interfaces. These interfacial processes involve ion/electron transfer, molecular/ion adsorption/desorption, and complex interface restructuring, which lead to irreversible modifications to the electrodes and the electrolyte. The understanding of these interfacial processes is thus crucial to provide strategies for solving those problems. In this review, we will discuss different interfacial processes at three representative interfaces, namely, solid–gas, solid–liquid, and solid–solid, in various electrochemical energy systems, and how they could influence the performance of electrochemical systems. 
    more » « less
  4. Abstract Developing efficient catalysts is of paramount importance to oxygen evolution, a sluggish anodic reaction that provides essential electrons and protons for various electrochemical processes, such as hydrogen generation. Here, we report that the oxygen evolution reaction (OER) can be efficiently catalyzed by cobalt tetrahedra, which are stabilized over the surface of a Swedenborgite-type YBCo 4 O 7 material. We reveal that the surface of YBaCo 4 O 7 possesses strong resilience towards structural amorphization during OER, which originates from its distinctive structural evolution toward electrochemical oxidation. The bulk of YBaCo 4 O 7 composes of corner-sharing only CoO 4 tetrahedra, which can flexibly alter their positions to accommodate the insertion of interstitial oxygen ions and mediate the stress during the electrochemical oxidation. The density functional theory calculations demonstrate that the OER is efficiently catalyzed by a binuclear active site of dual corner-shared cobalt tetrahedra, which have a coordination number switching between 3 and 4 during the reaction. We expect that the reported active structural motif of dual corner-shared cobalt tetrahedra in this study could enable further development of compounds for catalyzing the OER. 
    more » « less
  5. Atomically dispersed and nitrogen-coordinated single Ni sites ( i.e. , NiN x moieties) embedded in partially graphitized carbon have emerged as effective catalysts for CO 2 electroreduction to CO. However, much mystery remains behind the extrinsic and intrinsic factors that govern the overall catalytic CO 2 electrolysis performance. Here, we designed a high-performance single Ni site catalyst through elucidating the structural evolution of NiN x sites during thermal activation and other critical external factors ( e.g. , carbon particle sizes and Ni content) by using Ni–N–C model catalysts derived from nitrogen-doped carbon carbonized from a zeolitic imidazolate framework (ZIF)-8. The N coordination, metal–N bond length, and thermal wrinkling of carbon planes in Ni–N–C catalysts significantly depend on thermal temperatures. Density functional theory (DFT) calculations reveal that the shortening Ni–N bonds in compressively strained NiN 4 sites could intrinsically enhance the CO 2 RR activity and selectivity of the Ni–N–C catalyst. Notably, the NiN 3 active sites with optimal local structures formed at higher temperatures ( e.g. , 1200 °C) are intrinsically more active and CO selective than NiN 4 , providing a new opportunity to design a highly active catalyst via populating NiN 3 sites with increased density. We also studied how morphological factors such as the carbon host particle size and Ni loading alter the final catalyst structure and performance. The implementation of this catalyst in an industrial flow-cell electrolyzer demonstrated an impressive performance for CO generation, achieving a current density of CO up to 726 mA cm −2 with faradaic efficiency of CO above 90%, representing one of the best catalysts for CO 2 reduction to CO. 
    more » « less
  6. Abstract

    Many metal coordination compounds catalyze CO2electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure–reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X‐ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc‐catalyzed CO2reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi‐electron CO2reduction. CO, the key intermediate in the CO2‐to‐methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza‐N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X‐ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non‐centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co−CO adduct during the catalysis.

     
    more » « less
  7. Abstract

    Many metal coordination compounds catalyze CO2electroreduction to CO, but cobalt phthalocyanine hybridized with conductive carbon such as carbon nanotubes is currently the only one that can generate methanol. The underlying structure–reactivity correlation and reaction mechanism desperately demand elucidation. Here we report the first in situ X‐ray absorption spectroscopy characterization, combined with ex situ spectroscopic and electrocatalytic measurements, to study CoPc‐catalyzed CO2reduction to methanol. Molecular dispersion of CoPc on CNT surfaces, as evidenced by the observed electronic interaction between the two, is crucial to fast electron transfer to the active sites and multi‐electron CO2reduction. CO, the key intermediate in the CO2‐to‐methanol pathway, is found to be labile on the active site, which necessitates a high local concentration in the microenvironment to compete with CO2for active sites and promote methanol production. A comparison of the electrocatalytic performance of structurally related porphyrins indicates that the bridging aza‐N atoms of the Pc macrocycle are critical components of the CoPc active site that produces methanol. In situ X‐ray absorption spectroscopy identifies the active site as Co(I) and supports an increasingly non‐centrosymmetric Co coordination environment at negative applied potential, likely due to the formation of a Co−CO adduct during the catalysis.

     
    more » « less