skip to main content


Search for: All records

Creators/Authors contains: "Wang, Miaosheng"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    When periodically packing the intramolecular donor-acceptor structures to form ferroelectric-like lattice identified by second harmonic generation, our CD49 molecular crystal shows long-wavelength persistent photoluminescence peaked at 542 nm with the lifetime of 0.43 s, in addition to the short-wavelength prompt photoluminescence peaked at 363 nm with the lifetime of 0.45 ns. Interestingly, the long-wavelength persistent photoluminescence demonstrates magnetic field effects, showing as crystalline intermolecular charge-transfer excitons with singlet spin characteristics formed within ferroelectric-like lattice based on internal minority/majority carrier-balancing mechanism activated by isomer doping effects towards increasing electron-hole pairing probability. Our photoinduced Raman spectroscopy reveals the unusual slow relaxation of photoexcited lattice vibrations, indicating slow phonon effects occurring in ferroelectric-like lattice. Here, we show that crystalline intermolecular charge-transfer excitons are interacted with ferroelectric-like lattice, leading to exciton-lattice coupling within periodically packed intramolecular donor-acceptor structures to evolve ultralong-lived crystalline light-emitting states through slow phonon effects in ferroelectric light-emitting organic crystal.

     
    more » « less
  2. Abstract

    Charge-transfer excitons (CTEs) immensely enrich property-tuning capabilities of semiconducting materials. However, such concept has been remaining as unexplored topic within halide perovskite structures. Here, we report that CTEs can be effectively formed in heterostructured 2D perovskites prepared by mixing PEA2PbI4:PEA2SnI4, functioning as host and guest components. Remarkably, a broad emission can be demonstrated with quick formation of 3 ps but prolonged lifetime of ~0.5 μs. This broad PL presents the hypothesis of CTEs, verified by the exclusion of lattice distortion and doping effects through demonstrating double-layered PEA2PbI4/PEA2SnI4heterostructure when shearing-away PEA2SnI4film onto the surface of PEA2PbI4film by using hand-finger pressing method. The below-bandgap photocurrent indicates that CTEs are vital states formed at PEA2PbI4:PEA2SnI4interfaces in 2D perovskite heterostructures. Electroluminescence shows that CTEs can be directly formed with electrically injected carriers in perovskite LEDs. Clearly, the CTEs presents a new mechanism to advance the multifunctionalities in 2D perovskites.

     
    more » « less
  3. Abstract

    The ultralong‐lived upconversion luminescence with the lifetime of 0.48 s in a broad spectral range (530–650 nm) is observed in CD49 (9‐(3‐(5‐bromopyridin‐3‐yl)prop‐2‐yn‐1‐yl)‐9H‐carbazole) crystal designed with donor–acceptor (carbazole–pyridine) structures under infrared excitation, simultaneously accompanied with second harmonic generation (SHG). This phenomenon indicates orderly packing donor–acceptor structures form a nonlinearly polarizable ferroelectric‐like lattice with ultralong‐lived light‐emitting states, leading to much prolonged nonlinear optical behaviors. The persistent upconversion luminescence together with SHG is largely reduced when lowering crystallinity. This implies that nonlinearly polarizable ferroelectric‐like lattice provides the necessary condition to generate persistent upconversion luminescence. Evidently, persistent upconversion luminescence becomes completely lacking when only using ultralong‐lived light‐emitting states without nonlinearly polarizable ferroelectric‐like lattice, exampled by 4‐(dimethylamino)benzonitrile dispersed in polyvinyl alcohol matrix. Magneto‐photoluminescence shows that persistent upconversion luminescence is essentially a super‐delayed fluorescence from crystalline intermolecular charge‐transfer excitons formed in the nonlinearly polarizable ferroelectric‐like lattice. Magnetodielectrics indicate crystalline intermolecular charge‐transfer excitons are coupled with nonlinearly polarizable ferroelectric‐like lattice, leading to prolonged nonlinear optical behaviors shown as persistent upconversion luminescence through super delayed fluorescence. Therefore, crystalline intermolecular charge‐transfer excitons formed in nonlinearly polarizable ferroelectric‐like lattice provide an interesting platform to generate prolonged nonlinear optical behaviors toward developing persistent upconversion luminescence under multiphoton excitation.

     
    more » « less
  4. Abstract

    Photoinduced polarization and orbit–orbit interaction are important issues in hybrid perovskites toward developing optoelectronic functionalities. This paper identifies that photoinduced polarization occurs in hybrid perovskites with mixed‐cation methylammonium (MA)/formamidinium (FA) (MAxFA(1−x)PbI3) by measuring bulk polarization at 1 MHz in a magnetic field. Interestingly, when the internal dipole moment is increased upon increasing the MA:FA ratio, the photoinduced dipolar polarization can be substantially enhanced, clarifying the controversial issue of whether photoexcitation can induce a dielectric polarization within dipolar polarization regime in hybrid perovskites. Furthermore, upon increasing photoinduced dipolar polarization, it is found that the intrinsic orbit–orbit interaction between excitons can be increased, revealed by monitoring photocurrent change (ΔJsc) upon switching the photoexcitation between linear and circular polarizations. This presents that organic cations are directly involved in the orbit–orbit interaction within band structures. Clearly, the studies provide an insightful understanding of the dipole moment effects on photoinduced dipolar polarization and orbit–orbit interaction between excitons in hybrid perovskites toward controlling the optoelectronic properties.

     
    more » « less
  5. Abstract

    Understanding the feasibility to couple semiconducting and magnetic properties in metal halide perovskites through interface design opens new opportunities for creating the next generation spin‐related optoelectronics. In this work, a fundamentally new phenomenon of optically induced magnetization achieved by coupling photoexcited orbital magnetic dipoles with magnetic spins at perovskite/ferromagnetic interface is discovered. The depth‐sensitive polarized neutron reflectometry combined with in situ photoexcitation setup, constitutes key evidence of this novel effect. It is demonstrated that a circularly polarized photoexcitation induces a stable magnetization signal within the depth up to 7.5 nm into the surface of high‐quality perovskite (MAPbBr3) film underneath a ferromagnetic cobalt layer at room temperature. In contrast, a linearly polarized light does not induce any detectable magnetization in the MAPbBr3. The observation reveals that photoexcited orbital magnetic dipoles at the surface of perovskite are coupled with the spins of the ferromagnetic atoms at the interface, leading to an optically induced magnetization within the perovskite’s surface. The finding demonstrates that perovskite semiconductor can be bridged with magnetism through optically controllable method at room temperature in this heterojunction design. This provides the new concept of utilizing spin and orbital degrees of freedom in new‐generation spin‐related optoelectronic devices.

     
    more » « less
  6. Abstract

    A new approach to generate a two‐photon up‐conversion photoluminescence (PL) by directly exciting the gap states with continuous‐wave (CW) infrared photoexcitation in solution‐processing quasi‐2D perovskite films [(PEA)2(MA)4Pb5Br16withn= 5] is reported. Specifically, a visible PL peaked at 520 nm is observed with the quadratic power dependence by exciting the gap states with CW 980 nm laser excitation, indicating a two‐photon up‐conversion PL occurring in quasi‐2D perovskite films. Decreasing the gap states by reducing thenvalue leads to a dramatic decrease in the two‐photon up‐conversion PL signal. This confirms that the gap states are indeed responsible for generating the two‐photon up‐conversion PL in quasi‐2D perovskites. Furthermore, mechanical scratching indicates that the different‐n‐value nanoplates are essentially uniformly formed in the quasi‐2D perovskite films toward generating multi‐photon up‐conversion light emission. More importantly, the two‐photon up‐conversion PL is found to be sensitive to an external magnetic field, indicating that the gap states are essentially formed as spatially extended states ready for multi‐photon excitation. Polarization‐dependent up‐conversion PL studies reveal that the gap states experience the orbit–orbit interaction through Coulomb polarization to form spatially extended states toward developing multi‐photon up‐conversion light emission in quasi‐2D perovskites.

     
    more » « less