- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
01000000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Chen, Shikui (1)
-
Gu, Xianfeng David (1)
-
Wang, Michael Yu (1)
-
Xu, Xiaoqiang (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)In this paper, the authors proposeĀ a new dimension reduction method for level-set-based topology optimization of conforming thermal structures on free-form surfaces. Both the Hamilton-Jacobi equation and the Laplace equation, which are the two governing PDEs for boundary evolution and thermal conduction, are transformed from the 3D manifold to the 2D rectangular domain using conformal parameterization. The new method can significantly simplify the computation of topology optimization on a manifold without loss of accuracy. This is achieved due to the fact that the covariant derivatives on the manifold can be represented by the Euclidean gradient operators multiplied by a scalar with the conformal mapping. The original governing equations defined on the 3D manifold can now be properly modified and solved on a 2D domain. The objective function, constraint, and velocity field are also equivalently computed with the FEA on the 2D parameter domain with the properly modified form. In this sense, we are solving a 3D topology optimization problem equivalently on the 2D parameter domain. This reduction in dimension can greatly reduce the computing cost and complexity of the algorithm. The proposed concept is proved through two examples of heat conduction on manifolds.more » « less