skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Nan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Laser ablation is a process that bears both fundamental physics interest and has wide industrial applications. For decades, the lack of probes on the relevant time and length scales has prevented access to the highly nonequilibrium phase decomposition processes triggered by laser excitation. In this study, a close integration of time-resolved probing by intense femtosecond X-ray pulses with large-scale atomistic modeling has yielded unique insights into the ablation dynamics of thin gold films irradiated by femtosecond laser pulses. The emergence and growth of nanoscale density heterogeneities in the expanding ablation plume, predicted in the simulations, are mapped to the rapid evolution of distinct small angle diffraction features. This mapping enables identification of the characteristic signatures of different phase decomposition processes occurring simultaneously in the plume, which are driven by photomechanical and thermodynamic driving forces. Beyond the specific insights into the ablation phenomenon, this study demonstrates the power of joint X-ray probing and atomistic modeling of material dynamics under extreme conditions of thermal and mechanical nonequilibrium. 
    more » « less
    Free, publicly-accessible full text available December 1, 2026
  2. Climate change leads to frequent extreme temperature events, making cities vulnerable to severe heatwaves. Therefore, this study aims to provide a systematic and overarching review of the urban planning and design policy interventions for heatwave management. This study used a series of key terms to search for relevant studies in three databases, including Web of Science, ScienceDirect, and Wiley, and then identified 28 articles published between 2007 and 2023 after several inclusion and exclusion criteria. After a systematic review, 15 policy interventions for heatwave management were summarized from the built environment level and building level. Cooling mechanisms and the scope of application were discussed. The results of this study provide policymakers with comprehensive guidance on sustainable urban design and planning for heatwave management. 
    more » « less
  3. This paper focuses on the motion planning problem for the systems exhibiting both continuous and discrete behaviors, which we refer to as hybrid dynamical systems. First, the motion planning problem for hybrid systems is formulated using the hybrid equation framework, which is general to capture most hybrid systems. Second, a propagation algorithm template is proposed that describes a general framework to solve the motion planning problem for hybrid systems. Third, a rapidly-exploring random trees (RRT) implementation of the proposed algorithm template is designed to solve the motion planning problem for hybrid systems. At each iteration, the proposed algorithm, called HyRRT, randomly picks a state sample and extends the search tree by flow or jump, which is also chosen randomly when both regimes are possible. Through a definition of concatenation of functions defined on hybrid time domains, we show that HyRRT is probabilistically complete, namely, the probability of failing to find a motion plan approaches zero as the number of iterations of the algorithm increases. This property is guaranteed under mild conditions on the data defining the motion plan, which include a relaxation of the usual positive clearance assumption imposed in the literature of classical systems. The motion plan is computed through the solution of two optimization problems, one associated with the flow and the other with the jumps of the system. The proposed algorithm is applied to an actuated bouncing ball system and a walking robot system so as to highlight its generality and computational features. 
    more » « less